Answer:
13.20 litres
Explanation:
use pascal's law of volume and temperature
Wavelength is the distance between crests of the wave.
Answer: Gold.
Explanation: Water, CO2, and table salt are compounds. They are composed of two or more separate elements; a mixture, where as gold is neither.
<u>Answer: </u>The volume of the solution is 85.7 mL
<u>Explanation:</u>
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:
.....(1)
We are given:
Molarity of solution = 0.600 M
Given mass of
= 12.00 g
We know, molar mass of ![BaSO_4=[(1\times 137.33)+(1\times 32.07)+(4\times 16)]=233.4g/mol](https://tex.z-dn.net/?f=BaSO_4%3D%5B%281%5Ctimes%20137.33%29%2B%281%5Ctimes%2032.07%29%2B%284%5Ctimes%2016%29%5D%3D233.4g%2Fmol)
Putting values in equation 1, we get:

The rule of significant number that is applied for the problems having multiplication and division:
The least number of significant figures in any number of the problem determines the number of significant figures in the answer.
Here, the least number of significant figures is 3 that is determined by the number, 0.600. Thus, the answer must have these many significant figures only.
Hence, the volume of the solution is 85.7 mL
Answer:
a)CH₄, BH₃, and CCl₄
Explanation:
<u>London dispersion forces:-
</u>
The bond for example, in the molecule is F-F, which is non-polar in nature because the two fluorine atoms have same electronegativity values.
The intermolecular force acting in the molecule are induced dipole-dipole forces or London Dispersion forces / van der Waals forces which are the weakest intermolecular force.
Out of the given options, H₂O , NH₃ exhibits hydrogen bonding which is:-
<u>Hydrogen bonding:-
</u>
Hydrogen bonding is a special type of the dipole-dipole interaction and it occurs between hydrogen atom that is bonded to highly electronegative atom which is either fluorine, oxygen or nitrogen atom.
Thus option B and C rules out.
<u>Hence, the correct option which represents the molecules which would exhibit only London forces is:- a)CH₄, BH₃, and CCl₄</u>