Answer:

Explanation:
Hello there!
In this case, sine the solution of this problem require the application of the Raoult's law, assuming heptane is a nonvolatile solute, so we can write:

Thus, we first calculate the mole fraction of chloroform, by using the given masses and molar masses as shown below:

Therefore, the partial pressure of chloroform turns out to be:

Regards!
Answer:
Explanation:
T1 = 150°C = (150 + 273.15)K = 423.15K
T2 = 45°C = (45 + 273.15)K = 318K
V1 = 693mL = 693cm³
Applying Charle's law, the volume of a given gas is directly proportional to is temperature provided that pressure remains constant.
V = kT
V1 / T1 = V2 / T2
693 / 423.15 = V2 / 318
V2 = (693 * 318) / 423.15 = 520.79cm³
The new volume of the gas is 520.79cm³
Just breaking stuff so yea that’s it