Isotopes.
<span>Some isotopes of elements that are not usually radioactive are radioactive because they don't have a suitable number of neutrons. For example carbon-12 is stable but carbon-14 is radioactive. Carbon-12 is much more common.</span>
Explanation:
Here is the complete question:
1. For the reaction
N2(g)+O2(g)⇌2NO(g)N2(g)+O2(g)⇌2NO(g)
classify each of the following actions by whether it causes a leftward shift, a rightward shift, or no shift in the direction of the reaction.
a. halve nitrogen
b. double oxygen
c. halve oxygen
d. double nitrogen
e. double nitrogen monoxide
f. halve nitrogen monoxide
Taking note of Le Chatelier's Principle, the following is observed
1. right
2. left
3. left
4. left
5. right
6. right
Answer:

Explanation:
We must use the Nernst equation

1. Write the equation for the cell reaction
If you want the reduction potential, the pH 5.65 solution is the cathode, and the cell reaction is
<u> E°/V</u>
Anode: H₂(1 bar) ⇌ 2H⁺(1 mol·L⁻¹) + 2e⁻; 0
Cathode: <u>2H⁺(pH 5.65) + 2e⁻ ⇌ H₂(1 bar)</u>; <u> 0 </u>
Overall: 2H⁺ (pH 5.65) ⇌ 2H⁺(1 mol·L⁻¹); 0
Step 2. Calculate E°
(a) Data
E° = 0
R = 8.314 J·K⁻¹mol⁻¹
T = 25 °C
n = 2
F = 96 485 C/mol
pH = 5.65
Calculations:
T = 25 + 273.15 = 298.15 K
![\text{H}^{+} = 10^{\text{-pH}} = 2.24 \times 10^{-5}\text{ mol/\L}\\\\Q = \dfrac{\text{[H}^{+}]_{\text{prod}}^{2}}{\text{[H}^{+}]_{\text{react}}^{2}} = \dfrac{(1.00)^{2}}{(2.24 \times 10^{-5})^{2}} =2.00 \times 10^{9}\\\\\\E = 0 - \left (\dfrac{8.314 \times 298.15 }{2 \times 96485}\right ) \ln{2.00 \times 10^{9}}\\\\= -0.01285 \times 21.41 = \textbf{-0.275 V}\\\text{The cell potential for the cell as written is }\boxed{\textbf{-0.275 V}}](https://tex.z-dn.net/?f=%5Ctext%7BH%7D%5E%7B%2B%7D%20%3D%2010%5E%7B%5Ctext%7B-pH%7D%7D%20%3D%202.24%20%5Ctimes%2010%5E%7B-5%7D%5Ctext%7B%20mol%2F%5CL%7D%5C%5C%5C%5CQ%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BH%7D%5E%7B%2B%7D%5D_%7B%5Ctext%7Bprod%7D%7D%5E%7B2%7D%7D%7B%5Ctext%7B%5BH%7D%5E%7B%2B%7D%5D_%7B%5Ctext%7Breact%7D%7D%5E%7B2%7D%7D%20%3D%20%5Cdfrac%7B%281.00%29%5E%7B2%7D%7D%7B%282.24%20%5Ctimes%2010%5E%7B-5%7D%29%5E%7B2%7D%7D%20%3D2.00%20%5Ctimes%2010%5E%7B9%7D%5C%5C%5C%5C%5C%5CE%20%3D%200%20-%20%5Cleft%20%28%5Cdfrac%7B8.314%20%5Ctimes%20298.15%20%7D%7B2%20%5Ctimes%2096485%7D%5Cright%20%29%20%5Cln%7B2.00%20%5Ctimes%2010%5E%7B9%7D%7D%5C%5C%5C%5C%3D%20-0.01285%20%5Ctimes%2021.41%20%3D%20%5Ctextbf%7B-0.275%20V%7D%5C%5C%5Ctext%7BThe%20cell%20potential%20for%20the%20cell%20as%20written%20is%20%7D%5Cboxed%7B%5Ctextbf%7B-0.275%20V%7D%7D)
Answer:
Formula mass = 58.09 g
Explanation:
Formula mass of a given molecule is defined as the sum of atomic masses of elements forming the empirical formula of that molecule.
In order to calculate the formula mass of propanol, following data is required;
Empirical Formula of Propanol:
The empirical formula of Propanol is C₃H₆O (also the molecular formula) as it is the lowest possible atomic ratio of the given elements.
Atomic Masses of Elements:
Carbon = 12.01 g/mol
Hydrogen = 1.01 g/mol
Oxygen = 16.00 g/mol
Hence,
Formula mass = (At. mass of C)₃ + (At. mass of H)₆ + (At. mass of O)
Formula mass = (12.01)₃ + (1.01)₆ + (16.00)
Formula mass = 36.03 + 6.06 + 16.00
Formula mass = 58.09 g