Highest energy photon absorbed: 
Explanation:
An atom is said to be (positively) ionised when it absorbs a photon, and as a consequence, an electron becomes energetic enough to escape the atom, leaving an excess of positive charge behind.
In order for the electron to escape, the energy of the absorbed photon must be exactly equal to the (negative) energy of the level in which the electron lies.
For an hydrogen atom, the energy levels are given by

where this energy is measured in electronvolts, and n is the number of the energy level.
Since the energy is negative, this means that the electron which requires most energy is the one lying in the ground state (n=1). Therefore, for an electron in the ground state, the most energy that can be absorbed from the incoming photon is

Converting into Joules, this is equal to

Learn more about hydrogen atom:
brainly.com/question/2757829
#LearnwithBrainly
Answer:
A
Explanation:
this because
gravitational potential energy = mass x height x gravitational field strength
so let's assume mass is 2 kg and gravitational field strength is 10 N /kg
so when height is very low, take it as 3 m
gravitational potential energy= 2 x 3 x 10 = 60 j
but when height is 6m
gravitational potential energy = 2 x 6 x 10 = 120 j
so when the height is the greatest, the gravitational potential energy is the highest
so A is the heighest so it has the highest gravitational potential energy.
hope this helps
please mark it brainliest :D
The velocity is given by:
V = √(Vx²+Vy²)
V = velocity, Vx = horizontal velocity, Vy = vertical velocity
Given values:
Vx = 6m/s, Vy = 12m/s
Plug in and solve for V:
V = √(6²+12²)
V = 13.42m/s
Now find the direction:
θ = tan⁻¹(Vy/Vx)
θ = angle of velocity off horizontal, Vy = vertical velocity, Vx = horizontal velocity
Given values:
Vx = 6m/s, Vy = 12m/s
Plug in and solve for θ:
θ = tan⁻¹(12/6)
θ = 63.4°
The resultant velocity is 13.42m/s at an angle of 63.4° off the horizontal.
Answer: there is zero kinetic energy but there is Gravitational Potential Energy (GPE) and GPE = 8826.3 J
Explanation: