Answer:
answer is friction. MCQ A is answer
Option (a) is correct.
Falling objects accelerate as they approach the ground.This is because of the force of gravity acting on the falling objects. so the velocity of these objects increases continuously as they approach the ground. the acceleration acting on the falling objects is a constant ( close to the surface of earth) and is called as acceleration due to gravity denoted by g. value of g=9.8 m/s².
Answer:
To determine the volume of a given beaker/calorimeter by measuring its internal diameter and depth with vernier calipers. A vernier caliper is a measuring instrument with two scales: a main scale and a vernier scale that slides over the main scale.
Explanation:
Answer:
Maximum height attained by the model rocket is 2172.87 m
Explanation:
Given,
- Initial speed of the model rocket = u = 0
- acceleration of the model rocket =

- time during the acceleration = t = 2.30 s
We have to consider the whole motion into two parts
In first part the rocket is moving with an acceleration of a = 85.0
for the time t = 2.30 s before the fuel abruptly runs out.
Let
be the height attained by the rocket during this time intervel,

And Final velocity at that point be v

Now, in second part, after reaching the altitude of 224.825 m the fuel abruptly runs out. Therefore rocket is moving upward under the effect of gravitational acceleration,
Let '
' be the altitude attained by the rocket to reach at the maximum point after the rocket's fuel runs out,
At that insitant,
- initial velocity of the rocket = v = 195.5 m/s.
- a =

- Final velocity of the rocket at the maximum altitude =

From the kinematics,

Hence the maximum altitude attained by the rocket from the ground is

<span>Solar prominences
themselves are of no concern because they are visible in the Hydrogen Alpha
wavelength. They are anchored in place by magnetic fields. When these fields
break or reconnect, it can send the plasma that makes up the prominence away
from the sun. If one of these clouds impacts Earth, they are called CMEs or
coronal mass ejections. Depending on the magnetic orientation of the cloud with
respect to Earth's the CME can break down our magnetic field resulting in
geomagnetic storms, aurorae, power grid fluctuations, and particle radiation
near the poles, satellite single upset events, and radio blackouts. </span>
<span>
</span>
<span>Thus, letter a is the answer. </span>