We have all the charges for q1, q2, and q3.
Since k = 8.988x10^2, and N=m^2/c^2
F(1) = F (2on1) + F (3on1)
F(2on1) = k |q1 q2| / r(the distance between the two)^2
k^ | 3x10^-6 x -5 x 10^-6 | / (.2m)^2
F(2on1) = 3.37 N
Since F1 is 7N,
F(1) = F (2on1) + F (3on1)
7N = 3.37 N + F (3on1)
Since it wil be going in the negative direction,
-7N = 3.37 N + F (3on1)
F(3on1) = -10.37N
F(3on1) = k |q1 q3| / r(the distance between the two)^2
r^2 x F(3on1) = k |q1 q3|
r = sqrt of k |q1 q3| / F(3on1)
= .144 m (distance between q1 and q3)
0 - .144m
So it's located in -.144m
Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.
Answer: 32 centimeters is 12.5984 inches
Explanation:
OF COURSE !
The gravitational force between two objects doesn't ONLY depend on the product of their masses. It also depends on the distance between them.
I'm not even going to work out the numbers for my example. I'm just going to state without proof that at the top of the 2nd frame, the gravitational force between you and your bowling ball is greater than the gravitational force between you and the whole darn Andromeda galaxy ! My reasoning is based on the fact that your bowling ball is maybe 1 foot from your center of mass, whereas the Andromeda galaxy is more like 2.5 million light years from it. That right there is going to give your bowling ball a big advantage when it comes to gravity !
The uncertainty of the measurement is 0.001 gm.
The uncertainty in the measurement of a physical quantity is given as how precisely we can measure that, in this case as we can see that the mass of the sodium chloride is precisely given as 29.732 gm, this means the electronic scale is precise to 0.001 gm and round of the values after that which means there is a uncertainty of 0.001 gm.