Answer:
Depends on what are you refering to
Explanation:
So depending on what you are looking for (your question is quite vauge)
there are 5 atoms of the comopound (K2CO3)
within that compound, there are 2 atoms of Potassium and 1 atom of Carbonate. Within Carbonate there are 4 atoms (1 carbon and 3 oxygens)
so answers may be
5, 15, or 25.
I hope this helps.
Answer : The structure of
will be square-planar.
Explanation :
In the given molecule
, 'Xe' is the central atom and 'H' is the terminal atom.
Xenon has 8 valence electrons and hydrogen has 1 valence electron. Therefore, the total number of valence electrons are 8 + 4(1) = 12 electrons.
The number of electrons used in Xe-H bonding = 8 electrons
The remaining electrons which are used as lone pair on central atom (Xe) = 12 - 8 = 4 electrons
There are 4 bonding pairs and 2 lone pairs of electrons, they will be arranged in the octahedral arrangement around the central atom with 2 lone pairs of electrons on central atom. The lone pairs are arranged linearly across the central atom. The resulting structure will be square-planar.
The structure of
is shown below.
Answer:
Explanation:
the chemical equilibrium constant can be easily calculated since the concentrations at equilibrium are given.the calculation shows the value of Kc for the reversible reaction and forward reaction
This problem is asking for the percent by mass of hydrogen in hydrofluoric acid. At the end, the answer turns out to be D. 5% as shown below:
<h3>Percent compositions:</h3>
In chemistry, percent compositions are used for us to know the relative amount of a specific element in a compound. In order to do so for hydrogen, we use the following formula, which can also be applied to any other element in a given compound:

Where
stands for the atomic mass of hydrogen and
for the molar mass of hydrofluoric acid. In such a way, we plug in the atomic masses of hydrogen (1.01 g/mol) and fluorine (19.0 g/mol) to obtain:

Learn more about percent compositions: brainly.com/question/12247957
The rate of entropy change:
The rate of entropy change of the working fluid during the heat addition process is 3 kW/K
What is the Carnot cycle?
- The Carnot Cycle is a thermodynamic cycle made up of reversible isothermal expansion, adiabatic expansion, isothermal compression, and adiabatic compression processes in succession.
- The ratio of the heat absorbed to the temperature at which the heat was absorbed determines the change in entropy.
The entropy of a system:
The rate of heat addition is expressed as,
Q = 
The entropy of a system is a measure of how disorderly a system is getting. The rate of entropy generation during heat addition is,

Calculation:
<u>Given:</u>
= 400K
= 1600K
W = 3600 kW
Put all the values in the above equation, and we get,
=
= 3 kW/K
The rate of entropy change is 3 kW/K
Learn more about the Carnot cycle here,
brainly.com/question/13002075
#SPJ4