If the uncertainty of a certain measurement instrument is not given, then it is assumed to be equal to half of the least count of that instrument. In this case, the least count is 10 ml, so half of this is 5 ml. Therefore, the graduated cylinder has an uncertainty of +/- 5 ml
To find the mass of reagent to be added in the reaction, we need to determine the pH of the buffer. Using the following equation
pH= pKa + log ([NH3] / [NH4+])
= 9.26 + LOG ( 0.3 / 0.3)
= 9.26
[h+]= 5.5x10^-10 M, you need to increase that concentration for a ph of 8.6, [H+] needs to be 2.51x10^-9M
2.51x10^-9 moles - 5.5x10^10 moles = 1.96x10^-9 moles
1.96x10^-9 x 36.45g/mole = 7.14x10^-8 g
So the mass of HCI that you should add to the reaction is 7.14x10^-8 g
Answer:
when the water vapor condenses to the clouds which causes the clouds to become warm, which the makes it rain which this process is now called precipitation, then the rain decomposes when it forms from gas to a solid. and when the sun warms up the water, the water evaporates then enters a new process called evaporation.
Explanation:
The water cycle is the continuous movement of water in and around the Earth. As previously mentioned, water never really goes away -- it just changes form. The sun drives the entire water cycle and is responsible for its two major components: condensation and evaporation. When the sun heats the surface of water, it evaporates and ends up in the atmosphere as water vapor. It cools and rises, becoming clouds, which eventually condense into water droplets. Depending on the temperature of the atmosphere and other conditions, the water precipitates as rain, sleet, hail or snow.