Answer:
4.43L is final volume of the ballon
Explanation:
Avogadro's law of ideal gases states that <em>equal volumes of gases, at the same temperature and pressure, have the same number of molecules</em>.
The formula is:

Where V and n are volume and moles of the gas in initial and final conditions.
If the initial conditions are 0.0145 moles and 2.54L and final amount of moles is 0.0253moles, final volume is:

V₂ = <em>4.43L is final volume of the ballon</em>
Answer: The volume of the oxygen gas at a pressure of 2.50 atm will be 1.44 L
At constant temperature, the volume of a fixed mass of gas is inversely proportional to the pressure it exerts, then
PV = c
Thus, if the pressure increases, the volume decreases, and if the pressure decreases, the volume increases.
It is not necessary to know the exact value of the constant c to be able to use this law since for a fixed amount of gas at constant temperature, it is satisfied that,
P₁V₁ = P₂V₂
Where P₁ and P₂ as well as V₁ and V₂ correspond to pressures and volumes for two different states of the gas in question.
In this case the first oxygen gas state corresponds to P₁ = 1.00 atm and V₁ = 3.60 L while the second state would be P₂ = 2.50 atm and V₂ = y. Substituting in the previous equation,
1.00 atm x 3.60 L = 2.50 atm x y
We cleared y to find V₂,
V₂ = y =
= 1.44 L
Then, <u>the volume of the oxygen gas at a pressure of 2.50 atm will be 1.44 L</u>
Molality can be expressed by moles of solute over
kilograms of solvent. The question asks the molality of 0.25m NaCl. 0.25m NaCl
is equal to 0.25 moles of NaCl over 1 kg of water.
Answer:
Moles = Molecules / (6.0221415 x 10^23)
Explanation: