First solve the potential energy of the biker. using the fomula:
PE = mgh
where m is the mass of the object
g is the acceleration due to gravity ( 9.81 m/s2)
h is the height
PE = 96 kg ( 1120 m ) ( 9.81 m/s2)
PE = 1054771.2 J
then power = Work / time
P = 1054771.2 J / ( 120 min ) ( 60 s / 1 min)
P = 146.5 W
The ocean doesn't just store solar radiation; it also helps to distribute heat around the globe. When water molecules are heated, they exchange freely with the air in a process called evaporation. Ocean water is constantly evaporating, increasing the temperature and humidity of the surrounding air to form rain and storms that are then carried by trade winds, often vast distances. In fact, almost all rain that falls on land starts off in the ocean. The tropics are particularly rainy because heat absorption, and thus ocean evaporation, is highest in this area.
i hope this if not sorry
Answer:
392 Newtons
Explanation:
In order to find the weight, you have to multiply the mass by the gravitation constant (9.8), which gives us 40.0 * 9.8 = 392 Newtons.
Answer:
the total cross-sectional area of the capillaries is greater than the total cross-sectional area of the arteries or any other part of the circulatory system.
Explanation:
Blood velocity is not the same in all areas. In the capillaries it is where there is less speed, while in arteries and veins it is quite similar. This is due to the cross-sectional area of each of the vessels. It is a mistake to think of a vein, artery or capillary individually. We have to put them all together to see that the total area of the capillaries is 100 times larger than that of the arteries or veins. Blood flowing through arteries or veins is going faster because there is less area.
Blood velocity is inversely proportional to each of the areas of its territories. The greater the area, the lower the speed.
Answer:
Explanation:
The formula for Kinetic Energy is
. Filling in:
It looks like we only need 1 significant digit here but I'll give you 2 and you can round how you want.
KE = 2.4 × 10⁵ J