Answer:
25.2°C
Explanation:
Given parameters:
Energy applied to the water = 1000J
Mass of water = 50g
Final temperature = 30°C
Unknown:
Initial temperature = ?
Solution:
To solve this problem, we use the expression below:
H = m c Ф
H is the energy absorbed
m is the mass
c is the specific heat capacity
Ф is the change in temperature
1000 = 50 x 4.184 x (30 - initial temperature )
1000 = 209.2(30 - initial temperature)
4.78 = 30 - initial temperature
4.78 - 30 = - initial temperature
Initial temperature = 25.2°C
Answer:- 0.800 moles of the gas were collected.
Solution:- Volume, temperature and pressure is given for the gas and asks to calculate the moles of the gas.
It is an ideal gas law based problem. Ideal gas law equation is used to solve this. The equation is:
PV=nRT
Since it asks to calculate the moles that is n, so let's rearrange this for n:

V = 19.4 L
T = 17 + 273 = 290 K
P = 746 mmHg
we need to convert the pressure from mmHg to atm and for this we divide by 760 since, 1 atm = 760 mmHg

P = 0.982 atm
R = 
Let's plug in the values in the equation to get the moles.

n = 0.800 moles
So, 0.800 moles of the gas were collected.
Answer- the estimated number is 4 moles but it actually is 3.86 moles
Explanation
hi i hope your days been amazing and know that your loved⋆ ˚。⋆୨୧˚ ˚୨୧⋆。˚ ⋆
<33
Answer:
the volume of a give gas simple is directly propotional assolute temperature at constant pressure .the volume of a gavi. amount of gass is inversely propotional ot Its pressure when temperature is help constant
8 moles I think I’m not sure