1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
777dan777 [17]
3 years ago
9

Please help!!!

Mathematics
1 answer:
lord [1]3 years ago
7 0

Answer:

1a) Yes

1b) No

1c) Yes

1d) No

1e) Yes

1f) Yes

Step-by-step explanation:

1a) 3+4>5

     7>5 Yes

     4+5>3

      9>3  Yes

      5+3>4

      8>4 Yes

    <u> </u><u>Yes</u>

1b) 1+4 =5

No

<u>No</u>

1c) 1+5>5 Yes

      5+5>1 Yes

      1+5>5 Yes

<u>Yes</u>

1d) 4+3<8 No

<u>No</u>

1e) 8+8>4 Yes

    8+4>8 Yes

    8+4>8 Yes

<u>Yes</u>

1f) 4+4>4 Yes

  4+4>4 Yes

 4+4>4 Yes

<u>Yes</u>

       

You might be interested in
1.) Create a single variable linear equation that has no solution. Solve the equation algebraically to prove that it does not ha
Mazyrski [523]

9514 1404 393

Answer:

  1. x = x+1
  2. 0 = x+1
  3. x+1 = x+1

Step-by-step explanation:

1. There will be no solution if the equation is a contradiction. Usually, it is something that can be reduced to 0 = 1.

If we choose to make our equation ...

  x = x +1

Subtracting x from both sides of the equation gives ...

  0 = 1

There is no value of the variable that will make this be true.

__

2. Something that reduces to x = c will have one solution. One such equation is ...

  0 = x+1

  x = -1 . . . . subtract 1 from both sides

__

3. Something that reduces to x = x will have an infinite number of solutions.

One such equation is ...

  x+1 = x+1

Subtracting 1 from both sides gives ...

  x = x . . . . true for all values of x

3 0
3 years ago
A) A rectangle is 8.7 cm long and 5.4 broad.
Mama L [17]

Step-by-step explanation:

a)i) perimeter= side+side+side+side

perimeter=8.7+8.7+5.4+5.4=28.2cm

ii) area=h×b

area=8.7×5.4=46.98cm²

b)i) perimeter=20.35+20.35+17.84+17.84

perimeter=76.38cm

ii)area=20.35×17.84

area=363.044cm²

c) area of rectangular field=937.125m²

Length=36.75m

i)Breadth=937.125÷36.75=25.5m

ii)perimeter=36.75+36.75+25.5+25.5

perimeter=124.5m

8 0
3 years ago
20% of what number is 80?
marishachu [46]

Answer:   The answer is:  " 400 " .

____________________________________________

             →   20% of  <u>  400  </u>  is  80 .

____________________________________________

Step-by-step explanation:

____________________________________________

  20% of  "x" = 80 ;  Solve for  " x " ;  

20%   =  20/100 ;

         =   20 ÷  100 ;

         =   20.  ÷ 100 ;

         =   0.20  ;  

____________________________________________

Note that when <u>dividing by 100</u> , we move the decimal        

point backward (when "dividing") — 2 (two) spaces —

                                since "100" has 2 (two) "zeros" .

____________________________________________

         →   0.20 = 0.2 ;  

____________________________________________

          →   (0.2) x = 80 ; Solve for "x" ;

In this case, multiply each side of the equation by "10" ; to get rid of the "decimal value" ; as follows:

          →  (10) * (0.2) x = 80 * 10) ;

   to get:

          →   2x  =  800  ;

Now, divide Each Side of the equation by "2" ;

     to isolate "x" on one side of the equation ;

      & to solve for "x" ;  as follows:

          →   2x / 2  =  800 / 2  ;

          →     x  =  400 .

____________________________________________

The answer is:  " 400 " .

____________________________________________

   →  20% of  <u>  400  </u>  is  80 .

__________________________________________________

Hope this is helpful to you!

        Best wishes in your academic pursuits

              — and within the "Brainly" community!

____________________________________________

8 0
3 years ago
Read 2 more answers
What are the limits of integration if the summation the limit as n goes to infinity of the summation from k equals 1 to n of the
Fofino [41]

Answer:

\int_{2}^{9}x^2 dx so the limits are 2 and 9

Step-by-step explanation:

We want to express \lim_{n\rightarrow \infty} \sum_{k=1}^n\frac{7}{n}(2+\frac{7k}{n})^2 as a integral. To do this, we have to identify \sum_{k=1}^n\frac{7}{n}(2+\frac{7k}{n})^2 as a Riemann Sum that approximates the integral. (taking the limit makes the approximation equal to the value of the integral)

In general, to find a Riemann sum that approximates the integral of a function f over an interval [a,b] we can the interval in n subintervals of equal length and approximate the area (integral) with rectangles in each subinterval and them sum the areas. This is equal to

\sum_{k=1}^n f(y_k) \frac{b-a}{n}, where y_k\in[a+(k-1)\frac{b-a}{n},a+k\frac{b-a}{n}] is a selected point of the subinterval.

In particular, if we select the ending point of each subinterval as the y_k, the Riemann sum is:

\sum_{k=1}^n f(a+k\frac{b-a}{n}) \frac{b-a}{n}.

Now, let's identify this in \sum_{k=1}^n\frac{1}{7n}(2+\frac{7k}{n})^2 .

The integrand is x² so this is our function f. When k=n, the summand should be \frac{b-a}{n}f(b)=\frac{b-a}{n}b^2 because the last selected point is b. The last summand is \frac{7}{n}(9)^2 thus b=9 and b-a=7, then 9-a=7 which implies that a=2.

To verify our answer, note that if we substitute a=2, b=9 and f(x)=x² in the general Riemann Sum, we obtain the sum inside the limit as required.

4 0
3 years ago
What is the m∠ACB?<br><br> 10°<br> 50°<br> 90°<br> 180°
Musya8 [376]

Answer:

90

Step-by-step explanation:

ßimple answer no needs to panic

7 0
2 years ago
Read 2 more answers
Other questions:
  • Divide the binomial by the monomial to find the quotient -36x^4y + 144x^2 y^6/ -4x^2y
    13·2 answers
  • 5,7,11,17,25__ find the missing number
    10·2 answers
  • What's the answer to R+5=-13?
    12·2 answers
  • (I need some help please do if you can) ʕ•ᴥ•ʔ
    10·1 answer
  • Evaluate f(x) when x= 9
    10·1 answer
  • Question 5 of 10
    10·1 answer
  • Pls I need help I don’t understand this
    11·1 answer
  • I NEED HELP NOW
    9·1 answer
  • HELP THIS IS DUE SOON
    7·2 answers
  • A stack of magazines is 4 2/5 inches high. Each magazine is 2/5 inch thick.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!