Answer:
(2R,3S)-2-chloro-3,5-dimethylhexane
Explanation:
As first step we have the <u>attack of the OH group</u> to the P atom in the PCl3 and one of the Cl atoms would leave. Then we will have a <u>rearrangement</u> to produce a <u>double bond </u>with the oyxgen on the OH. Finally the Cl produced will a<u>ttack the carbon</u> in a <u>Sn2 substitution reaction</u> to produce the halide with an <u>opposite configuration</u>.
<span>nuclear symbol consists of three parts: 1. the symbol of the
element; 2. the atomic number of the element;3. the mass of the element. for
the above problem, the symbol for potassium is k. it's atomic number is 40. the
number of protons is 19. so we denote this in the following nuclear symbol; 40
k 19</span>
Answer: 9.9 grams
Explanation:
To calculate the moles, we use the equation:

a) moles of 

b) moles of 


According to stoichiometry :
1 mole of
combine with 1 mole of
Thus 0.33 mole of
will combine with =
mole of
Thus
is the limiting reagent as it limits the formation of product.
As 1 mole of
give = 1 mole of 
Thus 0.33 moles of
give =
of 
Mass of 
Thus theoretical yield (g) of
produced by the reaction is 9.9 grams
Adding an atom will increase the repulsion between existing atoms and lone pairs. Added atom will result in bond pair-bond pair and bond pair-lone pair repulsion. The magnitude of the lone pair-bond pair repulsion is greater than the bond pair-bond pair repulsion. The added atom will change the electron geometry and bring about a distortion in the molecular geometry.