Answer:
#include <stdio.h>
typedef struct InventoryTag_struct {
int itemID;
int quantityRemaining;
} InventoryTag;
int main(void) {
InventoryTag redSweater;
redSweater.itemID = 314;
redSweater.quantityRemaining = 500;
/* Your solution goes here */
printf("Inventory ID: %d, Qty: %d\n",redSweater.itemID,redSweater.quantityRemaining);
getchar();
return 0;
}
Explanation:
Answer:
t = 30.1 sec
Explanation:
If the ant is moving at a constant speed, the velocity vector will have the same magnitude at any point, and can be decomposed in two vectors, along directions perpendicular each other.
If we choose these directions coincident with the long edge of the paper, and the other perpendicular to it, the components of the velocity vector, along these axes, can be calculated as the projections of this vector along these axes.
We are only interested in the component of the velocity across the paper, that can be calculated as follows:
vₓ = v* sin θ, where v is the magnitude of the velocity, and θ the angle that forms v with the long edge.
We know that v= 1.3 cm/s, and θ = 61º, so we can find vₓ as follows:
vₓ = 1.3 cm/s * sin 61º = 1.3 cm/s * 0.875 = 1.14 cm/s
Applying the definition of average velocity, we can solve for t:
t =
= 
⇒ t = 30.1 sec
Answer:
a) 19 or select the closest answer
b) 5%
Explanation:
a)
from the voltage divide rule



Select the nearest answer
b)
obtained gain = 
Expected gain = 
∴ error = |
| × 100
= 1/20 × 100
= 5%
Answer:
The answer is true
Explanation:
Light duty scaffolds are to be used for loads up to 25 lbs./sq. ft.