As v becomes zero at the highest point, i prefer considering different travelling directions so it will become less complicated.
dont forget to add the total time up .
also to master the skills, write down the "uvsat" may help (thats the way i found it easier to handle problems)
Answer:
The angle it subtend on the retina is
Explanation:
From the question we are told that
The length of the warbler is 
The distance from the binoculars is 
The magnification of the binoculars is 
Without the 8 X binoculars the angle made with the angular size of the object is mathematically represented as



Now magnification can be represented mathematically as

Where
is the angle the image of the warbler subtend on your retina when the binoculars i.e the binoculars zoom.
So

=> 

Generally the conversion to degrees can be mathematically evaluated as

Answer:
A body travels 10 meters during the first 5 seconds of its travel,and a total of 30 meters over the first 10 seconds of its travel
20miles / 5sec = 4miles /sec would be the average speed for the last 20 m
Explanation:
The answer is 4 m/s.
In the first 5 seconds, a body travelled 10 meters. In the first 10 seconds of the travel, the body travelled a total of 30 meters, which means that in the last 5 seconds, it travelled 20 meters (30m + 10m).
The relation of speed (v), distance (d), and time (t) can be expressed as:
v = d/t
We need to calculate the speed of the second 5 seconds of the travel:
d = 20 m (total 30 meters - first 10 meters)
t = 5 s (time from t = 5 seconds to t = 10 seconds)
Thus:
v = 20m / 5s = 4 m/s
PLEASE GIVE BRAINIEST!! HOPE THIS HELPS
Answer:
Speed of the ball relative to the boys: 25 km/h
Speed of the ball relative to a stationary observer: 35 km/h
Explanation:
The RV is travelling at a velocity of

Here we have taken the direction of motion of the RV as positive direction.
The boy sitting near the driver throws the ball back with speed of 25 km/h, so the velocity of the ball in the reference frame of the RV is

with negative sign since it is travelling in the opposite direction relative to the RV. Therefore, this is the velocity measured by every observer in the reference frame of the RV: so the speed measured by the boys is
v = 25 km/h
Instead, a stationary observer outside the RV measures a velocity of the ball given by the algebraic sum of the two velocities:
v = +60 km/h + (-25 km/h) = +35 km/h
So, he/she measures a speed of 35 km/h.