Answer:
2Fe(s) + 3O2(g) --------> 2FeO3(s)
Explanation:
According to the question, a battery was used to light the steel wool by bringing the terminals very close together. When the battery came into contact with the steel wool, current was sent out through the thin wire. This caused the iron to heat up quite well.
Iron reacts with oxygen under these conditions as follows;
2Fe(s) + 3O2(g) --------> 2FeO3(s)
This is the chemical reaction that occurs when the steel wool is set on fire.
Answer:
A
Explanation:
Recall that Δ<em>H</em> is the sum of the heats of formation of the products minus the heat of formation of the reactants multiplied by their respective coefficients. That is:

Therefore, from the chemical equation, we have that:
![\displaystyle \begin{aligned} (-317\text{ kJ/mol}) = \left[\Delta H^\circ_f \text{ N$_2$H$_4$} + \Delta H^\circ_f \text{ H$_2$O} \right] -\left[3 \Delta H^\circ_f \text{ H$_2$}+\Delta H^\circ_f \text{ N$_2$O}\right] \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%28-317%5Ctext%7B%20kJ%2Fmol%7D%29%20%3D%20%5Cleft%5B%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%2B%20%20%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20H%24_2%24O%7D%20%20%5Cright%5D%20%20%20-%5Cleft%5B3%20%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20H%24_2%24%7D%2B%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20N%24_2%24O%7D%5Cright%5D%20%5Cend%7Baligned%7D)
Remember that the heat of formation of pure elements (e.g. H₂) are zero. Substitute in known values and solve for hydrazine:
![\displaystyle \begin{aligned} (-317\text{ kJ/mol}) & = \left[ \Delta H^\circ _f \text{ N$_2$H$_4$} + (-285.8\text{ kJ/mol})\right] -\left[ 3(0) + (82.1\text{ kJ/mol})\right] \\ \\ \Delta H^\circ _f \text{ N$_2$H$_4$} & = (-317 + 285.8 + 82.1)\text{ kJ/mol} \\ \\ & = 50.9\text{ kJ/mol} \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%28-317%5Ctext%7B%20kJ%2Fmol%7D%29%20%26%20%3D%20%5Cleft%5B%20%5CDelta%20H%5E%5Ccirc%20_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%2B%20%28-285.8%5Ctext%7B%20kJ%2Fmol%7D%29%5Cright%5D%20-%5Cleft%5B%203%280%29%20%2B%20%2882.1%5Ctext%7B%20kJ%2Fmol%7D%29%5Cright%5D%20%5C%5C%20%5C%5C%20%5CDelta%20H%5E%5Ccirc%20_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%26%20%3D%20%28-317%20%2B%20285.8%20%2B%2082.1%29%5Ctext%7B%20kJ%2Fmol%7D%20%5C%5C%20%5C%5C%20%26%20%3D%2050.9%5Ctext%7B%20kJ%2Fmol%7D%20%5Cend%7Baligned%7D)
In conclusion, our answer is A.
Answer:
1.53 atm
Explanation:
From the question given above, the following data were obtained:
Volume = constant
Initial pressure (P₁) = stp = 1 atm
Initial temperature (T₁) = 273 K
Final temperature (T₂) = 144 °C = 144 °C + 273 = 417 K
Final pressure (P₂) =?
Since the volume is constant, the final pressure can be obtained as follow:
P₁ / T₁ = P₂ / T₂
1 / 273 = P₂ / 417
Cross multiply
273 × P₂ = 417
Divide both side by 273
P₂ = 417 / 273
P₂ = 1.53 atm
Therefore, the final pressure (i.e the pressure inside the hot water bottle) is 1.53 atm.
Answer:
485.76 g of CO₂ can be made by this combustion
Explanation:
Combustion reaction:
2 C₄H₁₀(g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (g)
If we only have the amount of butane, we assume the oxygen is the excess reagent.
Ratio is 2:8. Let's make a rule of three:
2 moles of butane can produce 8 moles of dioxide
Therefore, 2.76 moles of butane must produce (2.76 . 8)/ 2 = 11.04 moles of CO₂
We convert the moles to mass → 11.04 mol . 44g / 1 mol = 485.76 g