Answer:
39.40 MeV
Explanation:
<u>Determine the minimum possible Kinetic energy </u>
width of region = 5 fm
From Heisenberg's uncertainty relation below
ΔxΔp ≥ h/2 , where : 2Δx = 5fm , Δpc = hc/2Δx = 39.4 MeV
when we apply this values using the relativistic energy-momentum relation
E^2 = ( mc^2)^2 + ( pc )^2 = 39.4 MeV ( right answer ) because the energy grows quadratically in nonrelativistic approximation,
Also in a nuclear confinement ( E, P >> mc )
while The large value will portray a Non-relativistic limit as calculated below
K = h^2 / 2ma^2 = 1.52 GeV
Answer:
<em>The second option has a lower power output. P=30 W</em>
Explanation:
<u>Mechanical Power
</u>
It is a physical magnitude that measures the rate a work W is done over time t.

Since W=F.d

The first option means the worker will lift the box by a distance of 1.2 meters in 3 seconds by applying 250 N of force. That produces a power of

The second option requires the worker applies 75 N of force and travel a distance of 4 meters for 10 seconds, thus the power is

The second option has a lower power output
Answer:No, it doesn't move easily downward because it will try to resist the movement ,due to a resistance force of inertia that it possess at rest.
Explanation:when an object has higher or larger mass it tends to resist any motion given to it unlike the one with lower mass.
The larger the mass the more resistance force an object has.
I think the correct answer is C
Answer:
c. P₁/T₁=P₂/T₂
Explanation:
neither Avogadro’s, Charles’, or Boyle’s law formula can be used, since some parameters like volume is not given,
to find P₂, given P₁, T₁, and T₂ we will therefore use Gay-lussac's law.
gay lussacs law state that, provided volume is kept constant, pressure is directly proportional to temperature.
the volume volume is said to be filled, i.e its is kept constants when temperature is change