Answer:
The astronaut's mass is 16 kg.
Explanation:
Mass can be defined as a measure of the amount of matter an object or a body comprises of. The standard unit of measurement of the mass of an object or a body is kilograms.
Irrespective of the location of an object or a body at a given moment in time, the mass (amount of matter that they're made up of) is constant. This ultimately implies that, whether you're in the moon, space, earth or any other place, your mass remains the same (constant).
Therefore, if an astronaut has a mass of 16 Kg on Earth, his mass on the moon and on the space station would remain the same, as his original mass of 16 Kg because mass is indestructible.
Answer:
a) P = 44850 N
b) 
Explanation:
Given:
Cross-section area of the specimen, A = 130 mm² = 0.00013 m²
stress, σ = 345 MPa = 345 × 10⁶ Pa
Modulus of elasticity, E = 103 GPa = 103 × 10⁹ Pa
Initial length, L = 76 mm = 0.076 m
a) The stress is given as:

on substituting the values, we get

or
Load, P = 44850 N
Hence<u> the maximum load that can be applied is 44850 N = 44.85 KN</u>
b)The deformation (
) due to an axial load is given as:

on substituting the values, we get

or

Answer:
water at high temperature
Explanation:
When heated, molecules move faster which results in the sound waves being transmitted faster.