Answer:
The wavelength of sunlight that can cause this bond breakage is 242 nm
Explanation:
The minimum energy of the sunlight that'll break Oxygen-oxygen bond must match 495 KJ/mol
But 1 mole of any molecule contains 6.02 × 10²³ molecules/mol
Each molecule of Oxygen will require (495 × 10³)/(6.02 × 10²³) = 8.22 × 10⁻¹⁹ J
E = hf
v = fλ
f = v/λ
f = frequency of the sunlight
λ = wavelength of the sunlight
v = speed of light = 3.0 × 10⁸ m/s
E = hv/λ
λ = hv/E
h = Planck's constant = 6.63 × 10⁻³⁴ J.s
λ = (6.63 × 10⁻³⁴)(3 × 10⁸)/(8.22 × 10⁻¹⁹)
λ = 2.42 × 10⁻⁷ m = 242 nm.
Weight = (mass) x (acceleration of gravity) .
On Earth, acceleration of gravity is 9.8 m/s² (rounded) .
650 N = (mass) x (9.8 m/s²)
Divide each side by (9.8 m/s²): 650 N / 9.8 m/s² = mass
Mass = 66.3 kilograms (rounded)
The kinetic energy and gravitational potential energy changes during its movement from ground to the top height.
<h3>What happens to kinetic and potential energy while motion?</h3>
When the ball moves upward, its gravitational potential energy is increases and kinetic energy begins to decrease but when the ball falls towards the earth, its gravitational potential energy is transformed into kinetic energy. When the ball collides with the ground, the kinetic energy is transformed into other forms of energy.
Learn more about kinetic energy here: brainly.com/question/20658056
Let
be the height of the building and thus the initial height of the ball. The ball's altitude at time
is given by

where
is the acceleration due to gravity.
The ball reaches the ground when
after
. Solve for
:


so the building is about 16 m tall (keeping track of significant digits).
There are correlation and causation between the force of the finger and the movement of the books