Answer:
According to Hund's rule and the Aufbau principle in which the orbitals must be filled with electrons, they are not strictly applied in the real universe, because the intermediate and electron-filled atomic orbitals are very stable . Because there are four d-orbitals in universe L, a typical half-full configuration will be xd4 and its full configuration will be xd8, where x is the primary orbital for any specific element. Here is an example:
Vahadium ₂₃V
in real universe: [Ar]₈ 3d³4s²
in universe L: [Ar]₁₈ 3d⁴4s¹
Chromium
in real universe: [Ar]₈ 3d⁵4s¹
in universe L: [Ar]₁₈ 3d⁴4s²
Explanation:
Answer:
Mass of benzene is: 149.3 g
Explanation:
Let's use density to calculate mass.
Density = Mass / Volume
Mass = Density . volume
Be careful, because density is in g/mL and the volume is in L. So let's convert the L to mL: 0.170 L . 1000 mL / 1L = 170 mL
0.8787 g/mL . 170 mL = Mass of benzene
Mass of benzene is: 149.3 g
This represents a primary amine. An amine has a nitrogen group that is connected to three substituents via single bonds. The number of carbon-based substitutents determines whether it is primary, secondary, or tertiary. In this case, since 2 substitutents are just hydrogen atoms, and only one has a carbon-based skeleton, this is a primary amine.
Answer:
Cl⁻ was oxidized.
Explanation:
- 4HCl + MnO₂ → Cl₂ + 2H₂O + MnCl₂
Oxidation can be defined as the process in which the oxidation number of a substance increases.
On the left side of the equation, Cl has a charge of -1 (in HCl); while on the right side of the equation Cl has a charge of 0 in Cl₂.
Thus, Cl⁻ was oxidized.