Answer:
Vapor pressure of solution is 78.2 Torr
Explanation:
This is solved by vapor pressure lowering:
ΔP = P° . Xm . i
Vapor pressure of pure solvent (P°) - vapor pressure of solution = P° . Xm . i
NaCl → Na⁺ + Cl⁻ i = 2
Let's determine the Xm (mole fraction) These are the moles of solute / total moles.
Total moles = moles of solvent + moles of solute
Total moles = 0.897 mol + 0.182 mol → 1.079 mol
0.182 / 1.079 = 0.168
Now we replace on the main formula:
118.1° Torr - P' = 118.1° Torr . 0.168 . 2
P' = - (118.1° Torr . 0.168 . 2 - 118.1 Torr)
P' = 78.2 Torr
Answer:
The molar mass of the gas is 44.19 g/mol
Explanation:
Amount of sample of gas = m = 13.5 g
Volume occupied by the gas = V = 5.10 L
Pressure of the gas = P = 149.83 KPa
1 KPa = 0.00986 atm
P = 
Assuming M g/mol to be the molar mass of the gas
Assuming the gas is behaving as an ideal gas

The molar mass of gas is 44.19 g/mol
Like gases, plasmas have no fixed shape or volume, and are less dense than solids or liquids. But unlike ordinary gases, plasmas are made up of atoms in which some or all of the electrons have been stripped away and positively charged nuclei, called ions, roam freely.
Answer: Water displacement
Explanation:
When you put an irregularly shaped object in a graduated cylinder, the water level rises. Subtract the original number of ml from the number of ml it was displaced, and you get its volume.