Answer:
Car B has a mass of 800 kg.
General Formulas and Concepts:
<u>Momentum</u>
Law of Conservation of Momentum: 
Explanation:
<u>Step 1: Define</u>
<em>Identify variables</em>
[Given] m₁ = 1200 kg
[Given] v₁i = 10 m/s
[Solve] m₂
[Given] v₂i = 0 m/s
[Given] vf = 6 m/s
<u>Step 2: Solve for m₂</u>
- Substitute in variables [Law of Conservation of Momentum]: (1200 kg)(10 m/s) + m₂(0 m/s) = (1200 kg + m₂)(6 m/s)
- Multiply: 12000 kg · m/s = (1200 kg + m₂)(6 m/s)
- Isolate m₂ term: 2000 kg = 1200 kg + m₂
- Isolate m₂: 800 kg = m₂
Answer;
By using kepler's 3rd law we find that;
-A year on Earth is shorter than a year on Saturn.
Explanation;
-Kepler’s 3rd law states that the square of a planet’s orbital period is proportional to the cube of its average distance from the Sun (semi-major axis), which tells us that more distant planets move more slowly in their orbits.
-In other words, if you square the 'year' of each planet, and divide it by the cube of its distance to the Sun, you get the same number, for all planets. The law captures the relationship between the distance of planets from the Sun, and their orbital periods.
<h2>Answer</h2>
1m/s
<h2>Explanation</h2>
Given that:
<em>Mass of first blob = 2kg = m1</em>
<em>Velocity of blob = 4m/s = v1</em>
<em>Mass of second blob = 6kg = m2</em>
<em>Velocity of blob = 0m/s = v2</em>
<em />
To find:
<em>Final velocity = Vf</em>
<em />
<em>This question is of inelastic collision which is any collision between objects in which some energy is lost.</em>
<em />
<h3>Formula to be use:</h3><h2>(m1*v1) + (m2*V2) = Vf(m1 + m2)</h2>
(2*4) + (6*0) = Vf(2+6)
8 + 0 = Vf(8)
8 = Vf(8)
Vf = 1 m/s
So the speed of two blobs immediately after colliding = 1 m/s
Conservation of momentum requires that the sum of momenta after is equal to that before. Since initially nothing is moving, the sum after the shot will also add to zero.
m₁v₁ = -m₂v₂
Solve for the cannon's velocity v₁
v₁ = -m₂v₂/m₁ = -2.10m/s
The negative sign means it's moving 2.10m/s south.
Answer:
43.88 meters per second
Explanation:
The computation of the speed is shown below:
As we know that

where,
Distance is 395,000 meters
Time is 9,000 seconds
Now placing these values to the formula
So, the speed is

= 43.88 meters per second
As speed shows the relation between the distance and time and the same is to be considered i.e by applying the formula