Answer: I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
Explanation:
An Oxidant is any substance that oxidizes, or receives electrons from, another; in so doing, it becomes reduced in oxidation number.
A Reductant thus exactly the opposite.
Note that the equation provided shows that Iodine (I2) received an electron to become NEGATIVELY CHARGED:
I2 --> 2I-.
The oxidation number reduced from 0 to -1.
In contrast, the oxidation number of 2S2O3(-2) increases from -4 to -2.
Thus, I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
The right answer for the question that is being asked and shown above is that: "<span>b. number/timed." Reaction Rate refers to the </span> speed of reaction<span> for a reactant or product in a particular </span>reaction<span> is intuitively defined as how fast or slow a</span>re action<span> takes place.</span>
Answer:
neq N2O4 = 0.9795 mol.....P = 0.5 atm; T = 25°C
Explanation:
ni change eq.
N2O4 1 1 - x 0.8154.....P = 1 atm; T = 25°C
NO2 0 0 + x x
∴ x = neq = Peq.V / R.T.....ideal gas mix
if P = 0.5 atm, T = 25°C; assuming: V = 1 L
⇒ x = neq = ((0.5 atm)(1 L))/((0.082 atm.L/K.mol)(298 K))
⇒ x = neq = 0.0205 mol
⇒ neq N2O4 = 1 - x = 1 - 0.0205 = 0.9795 mol
Answer:
a.
△H=−72 kcal
The energy required for production of 1.6 g of glucose is [molecular mass of glucose is 180 gm]
b.

The iron(III) ions and chloride ions remain aqueous and are spectator ions in a reaction that produces solid barium sulfate.