COVALENT BOND IS THE BOND EXISTING BETWEEN 2 ATOMS THAT SHARE 6 ELECTRONS
Answer:
True
Explanation:
Atomic radius can be defined as a measure of the size (distance) of the atom of a chemical element such as hydrogen, oxygen, carbon, nitrogen etc, typically from the nucleus to the valence electrons. The atomic radius of a chemical element decreases across the periodic table, typically from alkali metals (group one elements such as hydrogen, lithium and sodium) to noble gases (group eight elements such as argon, helium and neon). Also, the atomic radius of a chemical element increases down each group of the periodic table, typically from top to bottom (column).
<em>Hence, the atomic radius of phosphorus is smaller than the atomic radius of magnesium. Basically, the atomic radius of phosphorus is 98 pm while the atomic radius of magnesium is 145 pm.</em>
The energy of 393 kJ is released as heat. Then, the container will experience an increase of temperature and, given that it is sealed, also an increase of pressure.
The increase of temperature results from the heat developed during the reaction.
The increase of pressure results from the fact that that the solid carbon will become gaseuos carbon dioxide. This gas will occupy a larger volume than the solid carbon and also this elevation of the temperature will make the pressure of the gas inside the container increase.
Answer:
- <u><em>1.7 × 10³ kg of ore.</em></u>
Explanation:
Call X the amount of aluminum ore mined to produce 1.0 × 10³ kg the aluminum metal.
Then, taking into account the yield of the reaction (82 % = 0.82) and the percent of aluminun in the ore (71% = 0.71), you can write the following equation:
- X × 71% × 82% = 1.0 × 10³ kg
↑ ↑ ↑ ↑
(mass of ore) (% of Al in the ore) (yield) ( Al metal to obtain)
You must just simplify, solve and compute:
- X = 1,000 / (0.71 × 0.82) = 1,000 / 0.5822 = 1,717.6 Kg
Round to two significant figures; 1,700 kg = 1.7 × 10³ kg of ore ← answer.