Answer:
See explanation
Explanation:
a) The magnitude of intermolecular forces in compounds affects the boiling points of the compound. Neon has London dispersion forces as the only intermolecular forces operating in the substance while HF has dipole dipole interaction and strong hydrogen bonds operating in the molecule hence HF exhibits a much higher boiling point than Ne though they have similar molecular masses.
b) The boiling points of the halogen halides are much higher than that of the noble gases because the halogen halides have much higher molecular masses and stronger intermolecular forces between molecules compared to the noble gases.
Also, the change in boiling point of the hydrogen halides is much more marked(decreases rapidly) due to decrease in the magnitude of hydrogen bonding from HF to HI. The boiling point of the noble gases increases rapidly down the group as the molecular mass of the gases increases.
Answer:
N and P
Explanation:
Anion:
When an atom gain the electrons anion is formed. The negative sign shows that atom gain electron because number of electron are greater than protons or we can say that negative charge becomes greater than positive charge.
Cation:
When atom lose electron cation is formed. The atom thus have positive charge because number of positive charge i.e protons are increased are greater than negative charge or electron.
In given problem N and phosphorus both can gain three electrons which means negative charge becomes greater that's why the extra electron gained by atoms are written as -3 and both form anion with charge -3.
while Al form cation with charge +3 Mg form cation with charge +2 and iodine and bromine both form anion with charge of -1.
Fix ur transition, it sounds choppy