Answer:
The balloon filled with Helium will effuse more quickly.
Explanation:
Step 1: Data given
Balloon 1: Has a volume 4.3L , a pressure of 1.68 atm and is filled with 1.21g of Helium
Balloon 2: Has also a volume of 4.3 L and a pressure of 1.68 atm but is filled with 39.63 grams of Xenon
Molar mass of He = 4g/mol
Molar mass of Xe = 131.3 g/mol
Since He is lighter than Xe, the effusion rate for He will be larger than that for Xe, which means the time of effusion for He will be smaller than that for Xe.
The balloon filled with Helium will effuse more quickly.
I am a Nickel.
You're welcome.
Burning less fossil fuels and riding bikes or walking instead of cars.
Explanation:
Answer:
pH = 3.3
Explanation:
Buffer solutions minimize changes in pH when quantities of acid or base are added into the mix. The typical buffer composition is a weak electrolyte (wk acid or weak base) plus the salt of the weak electrolyte. On addition of acid or base to the buffer solution, the solution chemistry functions to remove the acid or base by reacting with the components of the buffer to shift the equilibrium of the weak electrolyte left or right to remove the excess hydronium ions or hydroxide ions is a way that results in very little change in pH of the system. One should note that buffer solutions do not prevent changes in pH but minimize changes in pH. If enough acid or base is added the buffer chemistry can be destroyed.
In this problem, the weak electrolyte is HNO₂(aq) and the salt is KNO₂(aq). In equation, the buffer solution is 0.55M HNO₂ ⇄ H⁺ + 0.75M KNO₂⁻ . The potassium ion is a spectator ion and does not enter into determination of the pH of the solution. The object is to determine the hydronium ion concentration (H⁺) and apply to the expression pH = -log[H⁺].
Solution using the I.C.E. table:
HNO₂ ⇄ H⁺ + KNO₂⁻
C(i) 0.55M 0M 0.75M
ΔC -x +x +x
C(eq) 0.55M - x x 0.75M + x b/c [HNO₂] / Ka > 100, the x can be
dropped giving ...
≅0.55M x ≅0.75M
Ka = [H⁺][NO₂⁻]/[HNO₂] => [H⁺] = Ka · [HNO₂]/[NO₂⁻]
=> [H⁺] = 6.80x010⁻⁴(0.55) / (0.75) = 4.99 x 10⁻⁴M
pH = -log[H⁺] = -log(4.99 x 10⁻⁴) -(-3.3) = 3.3
Solution using the Henderson-Hasselbalch Equation:
pH = pKa + log[Base]/[Acid] = -log(Ka) + log[Base]/[Acid]
= -log(6.8 x 10⁻⁴) + log[(0.75M)/(0.55M)]
= -(-3.17) + 0.14 = 3.17 + 0.14 = 3.31 ≅ 3.3