(a) Iron (iii) sulphate:
From the periodic table:
mass of iron = 55.845 grams
mass of sulphur = 32.065 grams
mass of oxygen = 16 grams
Iron (iii) sulphate has the formula: Fe2(SO4)3
molar mass = 2(55.845) + 3(32.065) + 3(4)(16) = 399.885 grams
(b) Sodium hydroxide:
From the periodic table:
mass of sodium = 22.989 grams
mass of oxygen = 16 grams
mass of hydrogen = 1 gram
Sodium hydroxide has the formula: NaOH
molar mass = 22.989 + 16 + 1 = 39.989 grams
(c) Barium carbonate
From the periodic table:
mass of barium = 137.327 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Barium carbonate has the formula: BaCO3
molar mass = 137.327 + 12 + 3(16) = 197.327 grams
(d) ammonium nitrate:
From the periodic table:
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of oxygen = 16 grams
Ammonium nitrate has the formula: NH4NO3
molar mass = 14 + 4(1) + 14 + 3(16) = 80 grams
(e) Lead (iv) oxide
From the periodic table:
mass of lead = 207.2 grams
mass of oxygen = 16 grams
Lead (iv) oxide has the formula: PbO2
molar mass = 207.2 + 2(16) = 239.2 grams
From the above calculations, we can see that:
Iron (iii) sulphate has the greatest mass.
Answer:
The percent yield of the reaction is 35 %
Explanation:
In the reaction, 1 mol of hydrazine reacts with 1 mol O₂ to produce 1 mol of nitrogen and 2 moles of water.
Let's verify the moles that were used in the reaction.
2.05 g . 1mol/ 32 g = 0.0640 mol
In the 100% yield, 1 mol of hydrazine produce 1 mol of N₂ so If I used 0.0640 moles of reactant, I made 0.0640 moles of products.
Let's use the Ideal Gases Law equation to find out the real moles of nitrogen, I made (real yield).
1atm . 0.550L = n . 0.082 . 295K
(1atm . 0.550L) / 0.082 . 295K = n → 0.0225 moles
Percent yield of reaction = (Real yield / Theoretical yield) . 100
(0.0225 / 0.0640) . 100 = 35%
Stars have a life cycle, just like people: they are born, grow, change over time, and eventually grow old and die. Most stars change in size, color, and class at least once in their lifetime.
Brainliest?
The answer would be 0.25 g/mL.
I determined the density by dividing the mass by the volume which gives you the density. D = mass/volume.
<span>6 g / 24 mL = 0.25 g/mL
</span>