Answer:
False
Explanation:
<em>If one of the bulbs is removed from the series, the other bulb will not come on at all.</em>
This is because the removal of one of the bulbs would interrupt the flow of current though the entire circuit.
Hence, that the other one will get brighter if one of two bulbs in a circuit is removed from its socket is not true.
Weight = (mass) x (acceleration of gravity at the place where the mass is) .
Man's mass = 80 kg
His weight on Earth = (80 kg) x (9.8 m/s²) = 784 newtons (about 176 pounds)
His weight on the Moon = (80 kg) x (1.63 m/s²) = <em>130.4 newtons</em> (about 29.2 pounds)
His mass is <em>80 kg</em>. Mass is the thing about him that doesn't change.
He has the same mass on the Earth, on the Moon, or anywhere.
Answer:
0.78 m
Explanation:
By the conservation of energy, the energy that they gain from potential energy, must be equal to the kinetic energy. So, for Adolf:
Ep = Ek
ma*g*ha = ma*va²/2
Where ma is the mass of Adolf, g is the gravity acceleration (10 m/s²), ha is the height that he reached, and va is the velocity. So:
100*10*0.51 = 100*va²/2
50va² = 510
va² = 10.2
va = √10.2
va = 3.20 m/s
Before the push, both of them are in rest, so the momentum must be 0. The system is conservative, so the momentum after the push must be equal to the momentum before the push:
ma*va + me*ve = 0, where me and ve are the mass and velocity of Ed. So:
100*3.20 + 81ve = 0
81ve = 320
ve = 3.95 m/s
By the conservation of energy for Ed:
me*g*he = me*ve²/2
81*10*he = 81*(3.95)²/2
810he = 631.90
he = 0.78 m
It would need to be over 20 because if the load of the Pulley E is 20 and the effort is 20, then they will be equal and the Pulley would not move, so your answer is at least 20