A possible answer would be a stocker. a person who sorts thing or delivery person who just drops things off. there are little to no jobs with no human interaction. some good options for jobs where you work by yourself are:
<span>Embalmer.Accountant.Travel Photographer.Tree Planter.Freelance Writer.Truck Driver.Data Scientist.<span>Taxidermist. I HOPE THIS HELPS!!!</span></span>
The form of energy that can move from place to place across the universe is light energy. On earth, the main source of this energy is Sun. Most of the light energy comes from the sun because it is the primary source of all the energies. The food, fossil fuels, movement of winds, etc all exists due to Sun. Without sun, there won't be any light energy on the earth. In all the processes which occur on earth has a direct or indirect involvement of light energy which comes from sun.
First we find the energy level with the following formula, where a is the energy level, n1 is the final energy level, n2 is the starting energy level and r is Rydberg's constant in Joules

We insert the values


The wavelength is found with this formula, where h is Planck's constant and c is the speed of light

Finally we insert the values

Which is the same as 93.8 nm
Answer:
wavelength decreases and frequency increase
Explanation:
the higher the wavelength the smaller the frequency , the smaller the wavelength the higher the frequency
Answer:
W = - 118.24 J (negative sign shows that work is done on piston)
Explanation:
First, we find the change in internal energy of the diatomic gas by using the following formula:

where,
ΔU = Change in internal energy of gas = ?
n = no. of moles of gas = 0.0884 mole
Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)
Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K
ΔT = Rise in Temperature = 18.8 K
Therefore,

Now, we can apply First Law of Thermodynamics as follows:

where,
ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)
W = Work done = ?
Therefore,

<u>W = - 118.24 J (negative sign shows that work is done on piston)</u>