1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
6

You observe two cars traveling in the same direction on a long, straight section of Highway 5. The red car is moving at a consta

nt Vr equal to 34 m/s and the blue car is moving at constant Vb equal to 28 m/s. At the moment you fist see them, the blue car is 22.0 m ahead of the red car.
1)How long after you first see the cars does the red car catch up to the blue car? (Express your answer to two significant figures.) (in seconds)

2)How far did the red car travel between when you fist saw it and when it caught up to the blue car? (Express your answer to two significant figures.) (in meters)

3)Suppose the red car started to accelerate at a rate of a equal to 2/3 m/s2 just at the moment you saw the cars. How long after that would the red car catch up to the blue car? (Express your answer to two significant figures.) (in seconds)
Physics
1 answer:
Arte-miy333 [17]3 years ago
4 0

Answer:

1)  3.66 s

2) 124.44 m

3) 3.12 s

Explanation:

Let's start by first listing down the information in the question.

Red Car : 34 m/s

Blue Car: 28 m/s

Distance between them : 22 m

The difference in speed between the cars is: 34 - 28 = 6 m/s

This means that the red car is catching up to the blue car at a speed of 6 m/s.

1) We can solve this by just dividing the distance by the difference in speed. This becomes:    \frac{Distance}{Speed}= \frac{22}{6} =   3.66

Thus it takes 3.66 seconds for the red car to catch up to the blue car.

2) We know from (1) that it took 3.66 seconds for the red car to catch up. Since the speed it was travelling at is constant, we only need to multiply it by the time from (1) to get the distance.

This becomes:    Speed * Time = 34 * 3.66 = 124.44

Thus the red car travels 124.44 m before catching up to the blue car.

3) If the red car starts to accelerate the moment we see it, the time taken to get to the blue car will be less than before. We can find this in a simple way.

We can use the motion equation : s = u*t + \frac{1}{2}(a * t^2)

Here s = 22 m

We can take u as the difference in speed. u = 6 m/s

Acceleration a = (2/3) m/s^2

Substituting the these into the equation we get:

22 = 6t + \frac{1}{2}(\frac{2}{3}t^2)

Solving this for the variable 't' using the quadratic formula we get the following two answers:

t1  = 3.12 s

t2 = - 21.12 s

Since t2 is not possible, the answer is t1. This means it takes 3.12 seconds for the red car to catch up to the blue.

You might be interested in
air passing over an airplanes wing travels ,and therefore exerts pressure.than air traveling beneath the wing.
pickupchik [31]
Bernoulli's principle of laminar/lamellar air flow, I think. High flow speed = low pressure, low flow speed = high pressure I think. So, the wings/aerofoils are designed to induce a low pressure on the top side of the wing and a high pressure on the underside of the wing, thus producing an "aerodynamic upthrust" (a static upthrust comes from an object in water via Archimedes) and LIFT. 

Two "particles" of air one going topside and the other underside meet again at the end of their motion across the wing. So, top side has to travel faster than bottom side. So top side has a lower "dynamic pressure" than underside.

And all that for 5 points ????????? (If I'm right, of course ... )
5 0
3 years ago
46. Can you take a walk in such a way that the distance
Vikki [24]

Answer: In a logical Pace forum subject to the distance

Explanation:

7 0
3 years ago
Tp-18 what should you do when operating a boat in large waves and high wind?
deff fn [24]

1) Try to head into the waves at some slight angle and the speed of the boat should be reduced. 

2) In order to ride up and over the waves, the speed of the boat should be slow. 

3) The less the speed of the boat, and the less strain will be put on the hull and superstructure.

5 0
3 years ago
A book falls off a shelf that is 10.0 m tall. What is the velocity at which the book hits the ground?
Elena L [17]

Answer:

14 m/s

Explanation:

The motion of the book is a free fall motion, so it is an uniformly accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. Therefore we can find the final velocity by using the equation:

v^2 = u^2 + 2gd

where

u = 0 is the initial speed

g = 9.8 m/s^2 is the acceleration

d = 10.0 m is the distance covered by the book

Substituting data, we find

v=\sqrt{0^2 + 2(9.8 m/s^2)(10.0 m)}=14 m/s

8 0
3 years ago
Friction occurs when the ____ and ____ of two surfaces grind against each other.
monitta

Friction occurs when the surfaces and heat of two surfaces grind against each other.

I think these are the answers

7 0
3 years ago
Other questions:
  • We find that the electric field of a charged disk approaches that of a charged particle for distances y that are large compared
    14·1 answer
  • The atomic mass of an atom (in amu) is equal to
    11·1 answer
  • a motorcycle accelerates from 15 m/s to 20 m/s over a distance of 50 meters. what is its average acceleration?
    9·1 answer
  • A spring scale hung from the ceiling stretches by 6.1 cm when a 2.0 kg mass is hung from it. The 2.0 kg mass is removed and repl
    6·1 answer
  • How is Uranus colder than Neptune
    8·1 answer
  • What is the last step in creating an argumentative essay?
    6·1 answer
  • The Sun keeps all of the planets orbiting it because _____.
    15·2 answers
  • In which layer can air temperatures reach 1,800c
    7·1 answer
  • Where would you expect light waves to move faster?
    6·2 answers
  • a current of 3 amps flows through a lamp which is connected to a 24 volt battery calculate the lamps resistance​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!