Answer:
Electric field, E = 40608.75 N/C
Explanation:
It is given that,
Mass of electrons, 
Initial speed of electron, u = 0
Final speed of electrons, 
Distance traveled, s = 6.3 cm = 0.063 m
Firstly, we will find the acceleration of the electron using third equation of motion as :



Now we will find the electric field required in the tube as :



E = 40608.75 N/C
So, the electric field required in the tube is 40608.75 N/C. Hence, this is the required solution.
Service disconnect
this is the first disconnect device after the utility meter.
Answer:
d) True light is the two fluctuating perpendicular fields
Explanation:
When we solve Maxwell's equations for this system, it results in a traveling wave that is perpendicular to the two fields.
Let's analyze the affirmations
a) False. The light needs both fields
b) False violates Lenz's law
c) False. The two fields are perpendicular
d) True two fluctuating perpendicular fields
e) Falos needs both fields
Correct answer d)
Solution :
The angular acceleration,
is obtained from the equation of the
of rotational motion,
Thus,

or 
where
is torque, F is force, d is moment arm distance, I is the moment of inertia
Thus, 
Now if the force and the moment arm distance are constant, then the
That is when, F = d = constant, then
.
Thus, moment of inertia, I is proportional to mass of the bar.
The mass is less for the bar in case (1) in comparison with that with the bar in case (2) due to the holes that is made in the bar.
Therefore, the bar in case (1), has less moment of inertia and a greater angular acceleration.