I the HCI is the mass of the equation but not always answer is Mg+HC H20
Answer:
CH₂O
Explanation:
Empirical formula:
It is the simplest formula gives the ratio of atoms of different elements in small whole number.
Molecular formula:
Molecular formula shows the actual whole number ratio of elements present in compound.
Given molecular formula: C₆H₁₂O₆
Empirical formula = CH₂O
In molecular formula six moles of carbon six moles of oxygen and 12 moles of hydrogen are present.
To get the smallest whole number we divide the each number by 6 and we get CH₂O which is empirical formula of C₆H₁₂O₆.
<span>1.40 x 10^5 kilograms of calcium oxide
The reaction looks like
SO2 + CaO => CaSO3
First, determine the mass of sulfur in the coal
5.00 x 10^6 * 1.60 x 10^-2 = 8.00 x 10^4
Now lookup the atomic weights of Sulfur, Calcium, and Oxygen.
Sulfur = 32.065
Calcium = 40.078
Oxygen = 15.999
Calculate the molar mass of CaO
CaO = 40.078 + 15.999 = 56.077
Since 1 atom of sulfur makes 1 atom of sulfur dioxide, we don't need the molar mass of sulfur dioxide. We merely need the number of moles of sulfur we're burning. divide the mass of sulfur by the atomic weight.
8.00 x 10^4 / 32.065 = 2.49 x 10^3 moles
Since 1 molecule of sulfur dioxide is reacted with 1 molecule of calcium oxide, just multiply the number of moles needed by the molar mass
2.49 x 10^3 * 56.077 = 1.40 x 10^5
So you need to use 1.40 x 10^5 kilograms of calcium oxide per day to treat the sulfur dioxide generated by burning 5.00 x 10^6 kilograms of coal with 1.60% sulfur.</span>