Answer:
7x² + 5x
Dtep-by-step explanation:
(9x² + 8x) - (2x² + 3x)
9x² + 8x - 2x²- 3x
7x² + 5x
Answer:
45
Step-by-step explanation:
Substitute i = 1, 2, 3, 4, 5 into the expression and sum the terms
3(1) + 3(2) + 3(3) + 3(4) + 3(5)
= 3 + 6 + 9 + 12 + 15
= 45
Hello :
f(12) represent : <span>B. The value of (7x − 1) when x = 12</span>
One pound is equivalent to 16 ounces.
Thus, multiply 14 pounds with 16 to get the number of ounces.

14 pounds equals 224 ounces. Let me know if you need any clarifications, thanks!
~ Padoru
Answer:
So, the volume is:

Step-by-step explanation:
We get the limits of integration:

We use the spherical coordinates and we calculate a triple integral:
![V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}\int_0^4 \rho^2 \sin \varphi \, d\rho\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \left[\frac{\rho^3}{3}\right]_0^4\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \cdot \frac{64}{3} \, d\varphi\, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} [-\cos \varphi]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\](https://tex.z-dn.net/?f=V%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%5Cint_0%5E4%20%20%5Crho%5E2%20%5Csin%20%5Cvarphi%20%5C%2C%20d%5Crho%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%5Csin%20%5Cvarphi%20%5Cleft%5B%5Cfrac%7B%5Crho%5E3%7D%7B3%7D%5Cright%5D_0%5E4%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%5Csin%20%5Cvarphi%20%5Ccdot%20%5Cfrac%7B64%7D%7B3%7D%20%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5B-%5Ccos%20%5Cvarphi%5D_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%20%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Csqrt%7B2%7D%20%5C%2C%20d%5Ctheta%5C%5C%5C%5C)
we get:
![V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\V=\frac{64\sqrt{2}}{3}\cdot[\theta]_0^{2\pi}\\\\V=\frac{128\sqrt{2}\pi}{3}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Csqrt%7B2%7D%20%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%5Csqrt%7B2%7D%7D%7B3%7D%5Ccdot%5B%5Ctheta%5D_0%5E%7B2%5Cpi%7D%5C%5C%5C%5CV%3D%5Cfrac%7B128%5Csqrt%7B2%7D%5Cpi%7D%7B3%7D)
So, the volume is:
