a) 10 m/s
b) 25 m
Explanation:
a)
The body is moving with a constant acceleration, therefore we can solve the problem by using the following suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
t is the time
For the body in this problem:
u = 0 (the body starts from rest)
is the acceleration
t = 5 s is the time
So, the final velocity is

b)
In this second part, we want to calculate the distance travelled by the body.
We can do it by using another suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
s is the distance travelled
Here we have
u = 0 (the body starts from rest)
is the acceleration
v = 10 m/s is the final velocity
Solving for s,

D. Because the moons shadow during a total lunar eclipse is tinnier than the earth.
Answer:
T = 1.2 s
T = 15.1 m = 15 m
Explanation:
This is a case of projectile motion:
TOTAL TIME OF FLIGHT:
The formula for total time of flight in projectile motion is:
T = 2 V₀ Sinθ/g
where,
T = Total Time of Flight = ?
V₀ = Launch Speed = 13.9 m/s
θ = Launch Angle = 25°
g = 9.8 m/s²
Therefore,
T = (2)(13.9 m/s)(Sin 25°)/(9.8 m/s²)
<u>T = 1.2 s</u>
<u></u>
RANGE OF BALL:
The formula for range in projectile motion is:
R = V₀² Sin2θ/g
where,
R = Horizontal Distance Covered by ball = ?
Therefore,
T = (13.9 m/s)²(Sin 2*25°)/(9.8 m/s²)
<u>T = 15.1 m = 15 m</u>
Answer:
Conductors- copper, aluminum, gold, and silver.
Insulators- glass, air, plastic, rubber, and wood.
Explanation:
Answer:
Push the washing machine harder onto the surface it sits upon, increasing friction between the two.
Explanation: