The answer is C. Electrical;mechanical
Answer:
A) The space time coordinate x of the collision in Earth's reference frame is
.
B) The space time coordinate t of the collision in Earth's reference frame is

Explanation:
We are told a rocket travels in the x-direction at speed v=0,70 c (c=299792458 m/s is the exact value of the speed of light) with respect to the Earth. A collision between two comets is observed from the rocket and it is determined that the space time coordinates of the collision are (x',t') = (3.4 x 10¹⁰ m, 190 s).
An event indicates something that occurs at a given location in space and time, in this case the event is the collision between the two comets. We know the space time coordinates of the collision seen from the reference frame of the rocket and we want to find out the space time coordinates in Earth's reference frame.
<em>Lorentz transformation</em>
The Lorentz transformation relates things between two reference frames when one of them is moving with constant velocity with respect to the other. In this case the two reference frames are the Earth and the rocket that is moving with speed v=0,70 c in the x axis.
The Lorentz transformation is




prime coordinates are the ones from the rocket reference frame and unprimed variables are from the Earth's reference frame. Since we want position x and time t in the Earth's frame we need the inverse Lorentz transformation. This can be obtained by replacing v by -v and swapping primed an unprimed variables in the first set of equations




First we calculate the expression in the denominator


then we calculate t




finally we get that

then we calculate x






finally we get that

Answer:

Explanation:
We are given that three resistors R1, R2 and R3 are connected in series.
Let
Potential difference across 
Potential difference across 
Potential difference across 
We know that in series combination
Potential difference ,
Using the formula

Hence, this is required expression for potential difference.
Momentum = mv
= .15 *20
= 3 kgm/s^2
<span>1. They’re invisible - RADIO WAVES
2. They have colors. - VISIBLE LIGHT WAVES
3. They’re used to learn about dust and gas clouds. - BOTH
4. They can travel in a vacuum. </span> - BOTH<span>
5. They’re used to find the temperature of stars. </span>- VISIBLE LIGHT WAVES<span>
6. They have energy. </span> - BOTH