The internal energy of the gas is 49,200 J
Explanation:
The internal energy of a diatomic gas, such as
, is given by

where
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas
For the gas in this problem, we have:
n = 4.50 (number of moles)
R = 8.31 J/(mol·K) (gas constant)
(absolute temperature)
Substituting, we find:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Electrostatic repulsion is the force between two charges having the same sign, that tends to separate them further. The force is proportional to the product of the charges, and inversely proportional to the square of the distance between them.
Answer: B. the isovolumetric process
Explanation:
In the graph given, the volume is constant throughout. It represents a constant volume process. Such processes are called the isovolumetric process or isochoric process.
<em>Hence, option B is the correct answer.</em>
Option A is incorrect because in an isobaric process, the pressure is constant.
Option C is incorrect because in an isothermal process, the temperature is constant.
Option D is incorrect because in an adiabatic process there is no heat transfer.
Answer:
The correct answer is the third option: The kinetic energy of the water molecules decreases.
Explanation:
Temperature is, in depth, a statistical value; kind of an average of the particles movement in any physical system (such as a glass filled with water). Kinetic energy, for sure, is the energy resulting from movement (technically depending on mass and velocity of a system; in other words, the faster something moves, the greater its kinetic energy.
Since temperature is related to the total average random movement in a system, and so is the kinetic energy (related to movement through velocity), as the thermometer measures <u>less temperature</u>, that would mean that the particles (in this case: water particles) are <u>moving slowly</u>, so that: the slower something moves, the lower its kinetic energy.
<u>In summary:</u> temperature tells about how fast are moving and colliding the particles within a system, and since it is <em>directly proportional</em> to the amount of movement, it can be related (also <em>directly proportional</em>) to the kinectic energy.