Unscrambling
1. resting heart rate
2. overload
3. workout
4. specificity
5. cool-down
6. progression
7. warm-up
8. the last one can only be instance, but there was a typo on the paper.
Answer:
at 10 seconds.. b/c that's when the velocity stops increasing..
Explanation:
Answer:
0.5 kg
Explanation:
» <u>Concepts</u>
Newton's second law, the Law of Acceleration, states that F = ma, where F = Force in Newtons, m = mass in kg, and a = acceleration in m/s^2.
» <u>Application</u>
We are asked to find the mass of the ball using the equation F = ma. We're also given the force and acceleration, so the equation looks like 5 = 10(m).
» <u>Solution</u>
Step 1: Divide both sides by 10.
Thus, the mass of the ball is 0.5 kg.
Answer:
A sound wave can be affected by a lot of different variables. As an audio engineer some of the more common things we deal with involve air temperature, humidity and even wind. The first two affect the speed at which the wave travels, while wind can actually cause a phase like effect if it is blowing hard enough. Another big one though not directly related to the air is walls and other solid objects that cause the sound wave to bounce off of them and reflect. This causes a secondary wave that isn’t as strong as the first wave but is the cause of “muddy” sounding venues when you are indoors.
Explanation:
Answer:
Explanation:
Given
for 
Sphere are 
when sphere
apart suppose deflection is 
We know

Where F=force between charged particle
Deflection


thus 
for 



(b)for
deflection Potential 
Electric Potential is 

where V=voltage
k=constant
r=distance between charges
Put value of Q in equation 1


thus 
therefore


