Answer:
a) The module's acceleration in a vertical takeoff from the Moon will be 
b) Then we can say that a thrust of
won't be able to lift off the module from the Earth because it's smaller than the module's weight (
).
Explanation:
a) During a vertical takeoff, the sum of the forces in the vertical axis will be equal to mass times the module's acceleration. In this this case, the thrust of the module's engines and the total module's weight are the only vertical forces. (In the Moon, the module's weight will be equal to its mass times the Moon's gravity acceleration)

Where:
thrust 
module's mass 
moon's gravity acceleration 
module's acceleration during takeoff
Then, we can find the acceleration like this:


The module's acceleration in a vertical takeoff from the Moon will be 
b) To takeoff, the module's engines must generate a thrust bigger than the module's weight, which will be its mass times the Earth's gravity acceleration.

Then we can say that a thrust of
won't be able to lift off the module from the Earth because it's smaller than the module's weight (
).
<span>The scientific investigation has five basic steps and one feedback step: (1) to make an observation (2) to ask a question (3) hypothesize (4) predict and (5) make a new hypothesis based on the results. What is unusual about the description of Elyse’s scientific investigation is she did not follow the basic steps. She should have done observation first before asking a question and forming a hypothesis. </span>
Answer:
<em>Scoliosis is a sideways curvature of the spine. Scoliosis is a sideways curvature of the spine that occurs most often during the growth spurt just before puberty. While scoliosis can be caused by conditions such as cerebral palsy and muscular dystrophy, the cause of most scoliosis is unknown.</em>
B. Density. I hope this helps!