Answer:

Explanation:
Given data
Length of tube L=0.632 m
Speed of sound v=344 m/s
To find
Fundamental frequency f
Solution
The fundamental frequency of the tube can be given as:

A scalar is a quantity that is fully described by a magnitude only. It is described by just a single number. Some examples of scalar quantities include speed, volume, mass, temperature, power, energy, and time. A vector is a quantity that has both a magnitude and a direction.
I hope this helps you.
His total displacement from his original position is -1 m
We know that total displacement of an object from a position x to a position x', d = final position - initial position.
d = x' - x
If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.
Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.
His final position, x" after moving back 6 m is gotten from
x" - x' = -6 m
x" = -6 + x'
x" = -6 + 5
x" = -1 m
Thus, his total displacement from his original position is
d = final position - initial position
d = x" - x
d = -1 m - 0 m
d = -1 m
So, his total displacement from his original position is -1 m
Learn more about displacement here:
brainly.com/question/17587058
Answer:
- the expected value is 8
- the standard deviation is 2.8284
Explanation:
Given the data in the question;
The model N(t), the number of planets found up to time t, as a poisson process,
∴ N(t) has distribution of poisson distribution with parameter (λt)
so
the mean is;
λ = 1 every month = 1/3 per month
E[N(t)] = λt
E[N(t)] = (1/3)(24)
E[N(t)] = 8
Therefore, the expected value is 8
For poisson process, Variance and mean are the same,
Var[N(t)] = Var[N(24)]
Var[N(t)] = E[N(24)]
Var[N(t)] = 8
so the standard deviation will be;
σ[N(24)] = √(Var[N(t)] )
σ[N(24)] = √(8 )
σ[N(24)] = 2.8284
Therefore, the standard deviation is 2.8284