<h3>

</h3><h3>Given</h3>
v = 20m\s
a = 3m\s^2
t = 4sec
Firstly we have to find u
a = 
3m\s =
12m\s = 20 - u
20 - u = 12m\s
- u = -8
u = 8
Now we can easily find distance by using second equation of motion
s = ut + 1\2 at^2
s = 8(4) + 1\2(3)(16)
s = 32 + 24
s = 56
So distance is 56 m\s hope it helps
Because sometimes it happens that they discover a dwarf planet
that nobody ever knew about before. When that happens, they
ADD the new one to the list of known dwarf planets, and then the
total number of dwarf planets on the list increases by 1 .
The potential difference across the parallel plate capacitor is 2.26 millivolts
<h3>Capacitance of a parallel plate capacitor</h3>
The capacitance of the parallel plate capacitor is given by C = ε₀A/d where
- ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m,
- A = area of plates and
- d = distance between plates = 4.0 mm = 4.0 × 10⁻³ m.
<h3>Charge on plates</h3>
Also, the surface charge on the capacitor Q = σA where
- σ = charge density = 5.0 pC/m² = 5.0 × 10⁻¹² C/m² and
- a = area of plates.
<h3>
The potential difference across the parallel plate capacitor</h3>
The potential difference across the parallel plate capacitor is V = Q/C
= σA ÷ ε₀A/d
= σd/ε₀
Substituting the values of the variables into the equation, we have
V = σd/ε₀
V = 5.0 × 10⁻¹² C/m² × 4.0 × 10⁻³ m/8.854 × 10⁻¹² F/m
V = 20.0 C/m × 10⁻³/8.854 F/m
V = 2.26 × 10⁻³ Volts
V = 2.26 millivolts
So, the potential difference across the parallel plate capacitor is 2.26 millivolts
Learn more about potential difference across parallel plate capacitor here:
brainly.com/question/12993474
Answer:
C) Contact
Explanation:
The magnet requires almost direct <u>contact</u> with the fridge to start its magnetic properties.
Non clastic sedimentary rocks from chemical reactions, chiefly in the ocean. Nonclastic and clastic sedimentary rocks are the only members of the rock family that contain fossils as well as indicators of the climate that was present when the rock was formed.