Answer:
The magnitude of the average frictional force on the block is 2 N.
Explanation:
Given that.
Mass of the block, m = 2 kg
Initial velocity of the block, u = 10 m/s
Distance, d = 50 m
Finally, it stops, v = 0
Let a is the acceleration of the block. It can be calculated using third equation of motion. It can be given by :



The frictional force on the block is given by the formula as :
F = ma

|F| = 2 N
So, the magnitude of the average frictional force on the block is 2 N. Hence, this is the required solution.
Answer:
boiling and melting!
Explanation:
These do not make any changes chemically to the substance.
Hope this helps!
Answer:
1800 m/
Explanation:
We know this because of Newton's first law,
, which shows us that the force on an object is equal to its mass times the acceleration it recieves. This means that taking our values of 900N and 0.5kg, and plugging them in,

This is honestly a little strange because the force applied and the acceleration seem ridiculous, and a little strange for an answer. Either the values are not meant to be nearly close to reality, or you made a typo.
Answer: The force of attraction that holds two molecules is a chemical bond
Explanation:
What is Chemical bonds?
Chemical bonds are forces that hold atoms together to make compounds or molecules.
Types of chemical bonds
Chemical bonds include
1.covalent,
2. polar covalent, and
3. ionic bonds.
Atoms with relatively similar electronegativities share electrons between them and are connected by covalent bonds.
Answer:
The acceleration is 2 m/s2.
Explanation:
We calculate the acceleration (a), with the data of mass (m) and force (F), through the formula:
F = m x a ---> a= F/m
a = 40 N/20 kg <em> 1N= 1 kg x m/s2</em>
a= 40 kgx m/s2/ 20 kg
<em>a= 2 m/s2</em>