Answer:
Mass of Little Sister = 44.17 kg
Explanation:
From Newton's second law of motion, the magnitude of force applied on the sled is given by the following formula:
F = ma
where,
F = Force Applied = 120 N
a = Acceleration = 2.3 m/s²
m = Mass of Sled + Mass of Little Sister = 8 kg + Mass of Little Sister
Therefore,
120 N = (2.3 m/s²)(8 kg + Mass of Little Sister)
(120 N)/(2.3 m/s²) = 8 kg + Mass of Little Sister
Mass of Little Sister = 52.17 kg - 8 kg
<u>Mass of Little Sister = 44.17 kg</u>

Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.
The question is incomplete, the complete question is;
The compound magnesium phosphate has the chemical formula Mg3(PO4)2. In this compound, phosphorus and oxygen act together as one charged particle, which is connected to magnesium, the other charged particle. What does the 2 mean in the formula 5Mg3(PO4)2? A. There are two elements in magnesium phosphate. B. There are two molecules of magnesium phosphate. C. There are two magnesium ions in a molecule of magnesium phosphate. D. There are two phosphate ions in a molecule of magnesium phosphate.
Answer:
There are two phosphate ions in a molecule of magnesium phosphate.
Explanation:
The compound magnesium phosphate is an ionic compound. Ionic compounds always consists of two ions, a positive ion and a negative ion.
In this case, the positive ion is Mg^2+ while the negative ion is PO4^3-.
The subscript, 2 after the formula of the phosphate ion means that there are two phosphate ions in each formula unit of magnesium phosphate.
Answer:
Input force of pulley system = 200 N
Explanation:
Given:
Mechanical advantage of pulley system = 5
Output force from pulley system = 1,000 N
Find;
Input force of pulley system
Computation:
Mechanical advantage = Output force / Input force
Mechanical advantage of pulley system = Output force from pulley system / Input force of pulley system
5 = 1,000 / Input force of pulley system
Input force of pulley system = 1,000 / 5
Input force of pulley system = 200 N