When an object does not move even on pushing , static frictional force acts on in opposite direction of the applied force to stop the object from moving. static frictional force is a self adjusting force and it adjust its value according to the applied force if the applied force is smaller than the maximum value of static frictional force. The object starts moving once the applied force on it becomes greater than the maximum static frictional force. hence the statement is true.
Answer:
weight at height = 100 N .
Explanation:
The problem relates to variation of weight due to change in height .
Let g₀ and g₁ be acceleration due to gravity , m is mass of the object .
At the surface :
Applying Newton's law of gravitation
mg₀ = G Mm / R²
At height h from centre
mg₁ = G Mm /h²
Given mg₀ = 400 N
400 = G Mm / R²
400 = G Mm / (6400 x 10³ )²
G Mm = 400 x (6400 x 10³ )²
At height h from centre
mg₁ = 400 x (6400 x 10³ )²/ ( 2 x 6400 x 10³)²
= 400 / 4
= 100 N .
weight at height = 100 N
The quickest technique to calculate the volume of a cube-shaped table is to use a ruler to measure one side, then multiply that figure by three. Option B is correct.
<h3 /><h3>How do you calculate the volume of a cube?</h3>
Assume the side length of the cube under consideration is L units. The volume of the cube is then equal to L³ cubic units.
The volume of a cube is;
V = L³
Ubes have equal-length sides. The quickest technique to calculate the volume of a cube-shaped table is to use a ruler to measure one side, then multiply that figure by three.
Hence option B is correct.
To learn more about the volume of a cube refer
brainly.com/question/26136041
#SPJ1
<span>The correct option is C. Energy cannot be created or destroyed. This statement is known as law of conservation of energy, and it implies that whenever a certain form of energy does change, the loss of this form of energy must have converted into an another type of energy. A typical example is an object falling to the ground: initially, the object has gravitational potential energy. As the object falls down, it loses potential energy (since its altitude from the grounf decreases), but it acquires kinetic energy (because its velocity increases). In this example, potential energy has converted into kinetic energy, but the total energy of the object has remained constant.</span>
Before Pluto was discovered, it was predicted. Astronomers had observed that massive objects can affect the orbits of its neighbors, and, after seeing deviations in the orbits of Uranus and Neptune, assumed something substantial existed beyond their orbits.
When Pluto was spotted, it was thought to be the predicted object and was identified as a ninth planet.
A few decades later, astronomers started discovering more and more objects around other stars and didn’t know whether to call them planets or not. There appeared to be a need to define what a planet means, and that led to what some people consider Pluto’s demotion to a dwarf planet.
The International Astronomical Union decided that full-sized planets must orbit the sun, have a round shape, and have cleared their orbits of other objects. Pluto fulfills the first two criteria, but not the third.
It still goes around the sun, it’s round enough, it’s got moons, and behaves like a planet, but the idea is that Pluto did not form the same way as the rest of the planets. Pluto’s orbit is both eccentric and inclined more than the rest of the planets by about 17 degrees. That’s suggests something is different about this object.
This debate about whether to call it a planet or not is silly, because it doesn’t matter to Pluto what you call it. It is an interesting object, goes around the sun, and shows geology and an atmosphere.
There’s a tendency to define objects based on what they are now, but nothing is constant in the universe. There are some issues with the nomenclature, and a definition today may not apply to the same object tomorrow.