Answer:
L₀ = L_f , K_f < K₀
Explanation:
For this exercise we start as the angular momentum, with the friction force they are negligible and if we define the system as formed by the disk and the clay sphere, the forces during the collision are internal and therefore the angular momentum is conserved.
This means that the angular momentum before and after the collision changes.
Initial instant. Before the crash
L₀ = I₀ w₀
Final moment. Right after the crash
L_f = (I₀ + mr²) w
we treat the clay sphere as a point particle
how the angular momentum is conserved
L₀ = L_f
I₀ w₀ = (I₀ + mr²) w
w =
w₀
having the angular velocities we can calculate the kinetic energy
starting point. Before the crash
K₀ = ½ I₀ w₀²
final point. After the crash
K_f = ½ (I₀ + mr²) w²
sustitute
K_f = ½ (I₀ + mr²) (
w₀)²
Kf = ½
w₀²
we look for the relationship between the kinetic energy
= 

K_f < K₀
we see that the kinetic energy is not constant in the process, this implies that part of the energy is transformed into potential energy during the collision
Any two objects in the universe attract each other. Gravity is the force exerted by earth on you (you exert the same force on earth) but due to the fact that earth has a huge mass compared to yours, you will be attracted to earth only by a small gravitational force.
Vapor is usually made with water and it would be made with gas.
Answer:
Explanation:
Let the internal resistance be r .
Since in open circuit the volt is 1.55 V , this will be the source voltage .
Source voltage = 1.55
If external resistance be R .
1.55 / (R + r ) = .500
R + r = 3.1 ohm
So sum of internal resistance and external resistance will be 3.1 ohm.