1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sauron [17]
3 years ago
7

Is it possible to have a charge of 5 x 10-20 C? Why?

Physics
1 answer:
ruslelena [56]3 years ago
8 0

1) No

2) Yes

3) No

4) Equal and opposite

5) 32400 N

6) Repulsive

7) The electric force is 2.3\cdot 10^{39} times bigger than the gravitational force

Explanation:

1)

In nature, the minimum possible charge that an object can have is the charge of the electron, which is called fundamental charge:

e=1.6\cdot 10^{-19}C

Electrons are indivisible particles (they cannot be separated), this means that an object can have at least the charge equal to the charge of one electron (in fact, it cannot have a charge less than e, because it would meant that the object has a "fractional number" of electrons).

In this problem, the object has a charge of

Q=5\cdot 10^{-20}C

If we compare this value to e, we notice that Q, so no object can have a charge of Q.

2)

As we said in part 1), an object should have an integer number of electrons in order to be charged.

This means that the charge of an object must be an integer multiple of the fundamental charge, so we can write it as:

Q=ne

where

Q is the charge of the object

n is an integer multiple

e is the fundamental charge

Here we have

Q=2.4\cdot 10^{-18}C

Substituting the value of e, we find n:

n=\frac{Q}{e}=\frac{2.4\cdot 10^{-18}}{1.6\cdot 10^{-19}}=15

n is integer, so this value of the charge is possible.

3)

We now do the same procedure for the new object in this part, which has a charge of

Q=2.0\cdot 10^{-19}C

Again, the charge on this object can be written as

Q=ne

where

n is the number of electrons in the object

Using the value of the fundamental charge,

e=1.6\cdot 10^{-19}C

We find:

n=\frac{Q}{e}=\frac{2.0\cdot 10^{-19}}{1.6\cdot 10^{-19}}=1.25

n is not integer, so this value of charge is not possible, since an object cannot have a fractional number of electrons.

4)

To solve this part, we use Newton's third law of motion, which states that:

"When an object A exerts a force on an object B (Action force), then object B exerts an equal and opposite force on object A (reaction force)".

In this problem, we have two objects:

- A charge Q

- A charge 5Q

Charge Q exerts an electric force on charge 5Q, and we can call this action force. At the same time, charge 5Q exerts an electric force on charge Q (reaction force), and according to Newton's 3rd law, the two forces are equal and opposite.

5)

The magnitude of the electric force between two single-point charges is

F=k\frac{q_1 q_2}{r^2}

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the two charges

In this problem we have:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

r = 0.30 cm = 0.003 m is the separation

So, the electric force  between the two charges is

F=(9\cdot 10^9)\frac{(4.5\cdot 10^{-6})(7.2\cdot 10^{-6})}{(0.003)^2}=32400 N

6)

The electric force between two charged objects has direction as follows:

- If the two objects have charges of opposite signs (+ and -), the force between them is attractive

- If the two objects have charges of same sign (++ or --), the force between them is repulsive

In this problem, the two charges are:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

We see that the two charges have same sign: therefore, the force between them is repulsive.

7)

The electric force between the proton and the electron in the atom can be written as

F_E=k\frac{q_1 q_2}{r^2}

where

q_1 = q_2 = e = 1.6\cdot 10^{-19}C is the magnitude of the charge of the proton and of the electron

r=5.3\cdot 10^{-11} m is the separation between them

So the force can be rewritten as

F_E=\frac{ke^2}{r^2}

The gravitational force between the proton and the electron can be written as

F_G=G\frac{m_p m_e}{r^2}

where

G is the gravitational constant

m_p = 1.67\cdot 10^{-27}kg is the proton mass

m_e=9.11\cdot 10^{-27}kg is the electron mass

Comparing the 2 forces,

\frac{F_E}{F_G}=\frac{ke^2}{Gm_p m_e}=\frac{(9\cdot 10^9)(1.6\cdot 10^{-19})^2}{(6.67\cdot 10^{-11})(1.67\cdot 10^{-27})(9.11\cdot 10^{-31})}=2.3\cdot 10^{39}

You might be interested in
A hydrometer is made of a tube of diameter 2.3cm.The mass of the tube and it's content is 80g. If it floats in a liquid density
iris [78.8K]

Answer:

The depth to which the hydrometer sinks is approximately 24.07 cm

Explanation:

The given parameters are;

The diameter of the hydrometer tube, d = 2.3 cm

The mass of the content of the tube, m = 80 g

The density of the liquid in which the tube floats, ρ = 800 kg/m³

By Archimedes' principle, the up thrust (buoyancy) force acting on the hydrometer = The weight of the displaced liquid

When the hydrometer floats, the up-thrust is equal to the weight of the hydrometer which by Archimedes' principle, is equal to the weight of the volume of the liquid displaced by the hydrometer

Therefore;

The weight of the liquid displaced = The weight of the hydrometer, W = m·g

Where;

g = The acceleration due to gravity ≈ 9.81 m/s²

∴ W = 80 g × g

The volume of the liquid that has a mass of 80 g (0.08 kg), V = m/ρ

V = 0.08 kg/(800 kg/m³) = 0.0001 m³ = 0.0001 m³ × 1 × 10⁶ cm³/m³ = 100 cm³

The volume of the liquid displaced = 100 cm³ = The volume of the hydrometer submerged, V_h

V_h = A × h

Where;

A = The cross-sectional area of the tube = π·d²/4

h = The depth to which the hydrometer sinks

h = V_h/A

∴ h = 100 cm³/( π × 2.3²/4 cm²) ≈ 24.07 cm

The depth to which the tube sinks, h ≈ 24.07 cm.

3 0
2 years ago
Explain how streams can erode soil and transport materials?
vladimir1956 [14]
The eroded rock and soil materials that are transported downstream by a river are called its load. A river transports, or carries, its load in three different ways: in solution, in suspension, and in its bed load. Mineral matter that has been dissolved from bedrock is carried in solution. Common minerals carried in solution by rivers include dissolved calcium, magnesium, and bicarbonate. Most of a river’s solution load comes from groundwater seeping into the river. Before it reaches the stream,thegroundwaterhastraveledthroughfracturesinthebedrock, chemically eroding rock along the way. When river water looks muddy, it is carrying rock material in suspension. Suspended material includes clay, silt, and fine sand. Although these suspended materials are heavier than water, the turbulence of the stream flow stirs them up and keeps them from sinking. Turbulence includes swirls and eddies that form in water as a result of friction between the stream and its channel. The faster a stream flows, the more turbulent and muddy it becomes. A rough or irregular channel also increases turbulence. A river may also transport rock materials in its bed load. The bed load consists of sand, pebbles, and boulders that are too heavy to be carried in suspension. These heavier materials are moved along the streambed, especially during floods. Boulders and pebbles roll or slide along the river bed. Large sand grains are pushed along the bottom in a series of jumps and bounces. The relative amounts of a river’s load that are carried in solution, in suspension, and in the bed load depend on the nature of the river, the climate, the type of bedrock, and the season of the year. As a general rule, most of the load carried by the world’s streams and rivers is carried in suspension. The size of a river’s suspended load increases with human land use. Road and building construction and removal of vegetation make it easier for rain to wash sediment into streams and rivers.
8 0
3 years ago
Scientists use a substance called Iodine-131 to treat cancer. As Iodine-131 undergoes radioactive decay and emits beta particles
olganol [36]

Answer:

I think it's strong I'm not to sure I'm sorry if it's wrong

6 0
3 years ago
Read 2 more answers
An inductor is connected to a 26.5 Hz power supply that produces a 41.2 V rms voltage. What minimum inductance is needed to keep
alexira [117]

Answer:

The minimum inductance needed is 2.78 H

Explanation:

Given;

frequency of the AC, f = 26.5 Hz

the root mean square voltage in the circuit, V_{rms} = 41.2 V

the maximum current in the circuit, I₀ = 126 mA

The root mean square current is given by;

I_{rms} = \frac{I_o}{\sqrt{2} } \\\\I_{rms}  = \frac{126*10^{-3}}{\sqrt{2} }\\\\I_{rms}  =0.0891 \ A

The inductive reactance is given by;

X_l = \frac{V_{rms}}{I_{rms}} \\\\X_l= \frac{41.2}{0.0891}\\\\X_l = 462.4 \ ohms

The minimum inductance needed is given by;

X_l = \omega L\\\\X_l = 2\pi  fL\\\\L = \frac{X_l}{2\pi f}\\\\L = \frac{462.4}{2\pi *26.5}\\\\L = 2.78 \ H

Therefore, the minimum inductance needed is 2.78 H

7 0
3 years ago
If chris throws a baseball 60 meters in 4 seconds, what is the average speed of the football?
IceJOKER [234]
The average speed of the football is 15 meters per second. Just divide both of the numbers by 4 :)
6 0
3 years ago
Other questions:
  • Which statement is true regarding the relationship between distance and displacement
    11·2 answers
  • A football coach starts at the 50-yard line (a) and walks to the 10-yard line (b) he turns around and walks to the 40-yard line
    9·1 answer
  • A gas occupies 210 ml at -73°c. to have the same gas occupy 360 ml: should the temperature be increased or decreased? what is t
    6·1 answer
  • Consider atmospheric air at 20°C and a velocity of 30 m/s flowing over both surfaces of a 1-m-long flat plate that is maintained
    5·1 answer
  • What is one or two letter character used to identify an element
    10·2 answers
  • If a ball goes at 20 miles per hour what's the velocity
    14·1 answer
  • John pushes forward on a car with a force of 125n while bob pushes backward on the car with a force of 225n. what is the net for
    10·2 answers
  • You put a 3 kg block in the box, so the total mass is now 9 kg, and you launch this heavier box with an initial speed of 5 m/s.
    14·1 answer
  • Why is it generally easy to filter out particles in suspension?
    10·1 answer
  • Students were asked to create roller coasters for marbles. The only requirement is that the roller coaster include at least one
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!