<u>Answer:</u> The number of electrons for n = 0, 1 and 2 are 2, 6 and 10 respectively.
<u>Explanation:</u>
Huckel's rule is used to determine the aromaticity in a compound. The number of delocalized
electrons are calculated by using the equation:

where,
n = 0 or any whole number
- Calculating the value of electrons for n = 0
Putting values in above equation, we get:

- Calculating the value of electrons for n = 1
Putting values in above equation, we get:

- Calculating the value of electrons for n = 2
Putting values in above equation, we get:

Hence, the number of electrons for n = 0, 1 and 2 are 2, 6 and 10 respectively.
Answer:
Covalent bond
Explanation:
A covalent bond is defined as the sharing of election pairs between atoms
<h3>What is the oxidation number of oxygen in H2O?</h3>
Oxygen almost always has an oxidation number of -2, except in peroxides (H 2 O 2) where it is -1 and in compounds with fluorine (OF 2) where it is +2. Hydrogen has an oxidation number of +1 when combined with non-metals, but it has an oxidation number of -1 when combined with metals.
<h3><em>Sure hoep this helps you :)</em></h3>
The density of the solid object will be 2.63 g/mL
<h3>What is density?</h3>
Density of objects = mass/volume.
Recall that an object will always displace its own volume when placed in a liquid.
Volume of the solid object = Cylinder reading after immersing the object in the water - cylinder reading before immersing the object in the water.
= 48.1 - 20.4
= 27.8 mL
Mass of the solid object = 73.05 g
Density of the object = 73.05/27.8
= 2.63 g/mL
More on density can be found here: brainly.com/question/15164682
#SPJ1
The net ionic equation is shorter to use and already leaves out the electrons that transferred from the reducing agent to the oxidizing agent. Also, in some occasions the aqueous ions H+ and (or) OH- ions that help balance the net ionic charge are no longer shown in the net ionic equation.