To calculate for the volume, we need a relation to relate the number of moles (n), pressure (P), and temperature (T) with volume (V). For simplification, we assume the gas is an ideal gas. So, we use PV=nRT.
PV = nRT where R is the universal gas constant
V = nRT / P
V = 65.5 ( 0.08205 ) (273.15 + 50.30) / 9.15
V = 189.98 L
Answer:

Explanation:
Hello!
In this case, since we are considering an gas, which can be considered as idea, we can write the ideal gas equation in order to write it in terms of density rather than moles and volume:

Whereas MM is the molar mass of the gas. Now, since we can identify the initial and final states, we can cancel out R and MM since they remain the same:

It means we can compute the final density as shown below:

Now, we plug in to obtain:

Regards!
Answer: Chemicals like acids and bases are harmful and must be neutralized before draining.
Explanation:
A strong acid or strong base is required to be diluted or neutralized before it is discarded in the drain as if is discarded without diluting and neutralization it can spill and splash from sink or drain and can harm people in chemistry lab, moreover the fumes of the discarded chemical on spilling can cause respiratory tract burning and can even cause fire hazard so it must be converted into less harmful form and then must be drained.
Answer:
Dipole-dipole interactions
Step-by-step explanation:
Each molecule consists of <em>two different elements</em>.
Thus, each molecule has permanent <em>bond dipoles</em>.
The dipoles do not cancel, so the attractive forces are dipole-dipole attractions.
"Covalent bonds" is <em>wrong,</em> because there are no bonds between the two molecules.
There are dipole-induced dipole and London dispersion forces, but they are much weaker than the dipole-dipole attractions.
Answer:
I Believe it is 4 orbitals s,p,p,p or aka sp^3
Explanation: