Answer:

Explanation:
The energy of a photon is given by:

where
h is the Planck constant
c is the speed of light
is the wavelength of the photon
In this problem, we have a microwave photon with wavelength

Substituting into the equation, we find its energy:

Answer:
F=5449 N
Explanation:
Work done is a product of force and displacement ie
Work done, W, = Force*Displacement
Power, P, is Work done/Time
where P is power, W is work done, F is force, S is displacement and t is time
In this case, F is the frictional force. Converting the power from hp to W, we multiply by 746 hence P=746*168=125328 W
Since displacement/time is velocity, then
P=FV where V is velocity in m/s
Making F the subject


F=5449 N
Answer: 15.29
Explanation: there you go have a nice day (*^p^*)
Air is the answer i do believe