<span>Since forces are vector quantities, we must indicate direction using positive and negative values. East will be assigned positive and west will be negative. Friction will act as a negative force since it impedes action. To calculate the net force we sum the vector quantities, as follows. Net force equals 50n which is derived by the following calculation: 300n-220n-30n.</span>
When the force on some area is doubled and the area doesn't change,
then the pressure on that area has doubled.
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.
Cubical expansion, also known as, volumetric expansion has the following formula:
</span>Δ V = β V₁ ΔT
V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.
β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
I think the correct answer from the choices listed above is the second option. The relationship between the direction of energy and wave motion in a transverse wave would be the <span>energy direction is perpendicular to the motion of the wave. Hope this answers the question. Have a nice day.</span>
Given mass = 2kg, height = 10m,g = 9.8.
We know that Work done W = FD
= > W = (mg)(D)
= > W = (2 * 9.8)(10)
= > W = 196 Joules.
Hope this helps!