Answer:
The square of the orbital period of a planet is directly proportional to the cube of the semimajor axis of its orbit.
Explanation:
hope this helps.
Do not forget that mass = <span>volume x density
</span>Mass of 1 cm^3 = Density[/tex]

Then eventually we can find <span>mass of 5 cm^3 : =
</span>

So the answer is D
<span>And that's it. I'm sure it will help.</span>
The reason why there is a difference between free-fall acceleration is a centrifugal force.
I attached a diagram that shows how this force aligns with the force of gravity.
From the diagram we can see that:

Where g' is the free-fall acceleration when there is no centrifugal force, r is the radius of the planet, and w is angular frequency of planet's rotation.

is the latitude.
We can calculate g' and wr^2 from the given conditions in the problem.

Our final equation is:

Colatitude is:

The answer is:
It takes the shape of the cup and it can be sucked through a straw
Initial velocity = Vo= 25 m/s
Final velocity = V = x
Acceleration= a = 6 m/s^2
time= t = 4 seconds
Appy the equation:
V = Vo + at
Replacing:
V = 25 + 6(4) = 25 + 24 = 49 m/s