Newton’s 2nd law states that Force is equal to
the product of mass (m) and acceleration (a):
F = m a --->
1
While in magnetic forces, force can also be expressed as:
F = q v B --->
2
where,
q = total charge
v = velocity = 45 cm / s = 0.45 m / s
B = the magnetic field = 85 T
First we solve for the total charge, q:
q = 3.8 × 10^-23 g (1 mol / 23 g) (6.022 × 10^23 electrons / mol) (1.602 ×
10^-19 C / electron)
q = 1.594 × 10^-19 C
We equate equations 1 and 2 then solve for acceleration a:
m a = q v B
a = q v B / m
a = [1.594 × 10^-19 C * 0.45 m / s * 85 T] / 3.8 × 10-26 kg
a = 160,437,862.2 m/s^2
Therefore the maximum acceleration of Na ions is about 160 × 10^6 m/s^2.
Explanation:
Kepler’s third law states that for all objects orbiting a given body, the cube of the semimajor axis (A) is proportional to the square of the orbital period (P).
For each of our planets orbiting the Sun, the relationship between the orbital period and semimajor axis can be represented by the equation as:

k is constant of proportionality
It is required to solve the above equation for k

I believe the answer would be 7.5 m/s^2
Answer:
3 N to the right
Explanation:
There are two forces acting on the car:
- A force of 10 N towards the right
- A force of 7 N towards the left
Therefore, the net force is given by the difference between the two, since they are in opposite directions:

And the direction is to the right, since the force to the right has greater magnitude than the force to the left.
Answer:
m = 56.5 kg
Explanation:
Since the addition of mass on one piston caused a change in pressure head at the other. Diameter of the piston calculated is used as 0.46 m
Δm*g / Area = p * g * Δh ..... Eq1

