Answer:
W = 9.93 10² N
Explanation:
To solve this exercise we must use the concept of density
ρ = m / V
the tabulated density of copper is rho = 8966 kg / m³
let's find the volume of the cylindrical tube
V = A L
V = π (R_ext ² - R_int ²) L
let's calculate
V = π (4² - 2²) 10⁻⁴ 3
V = 1.13 10⁻² m³
m = ρ V
m = 8966 1.13 10⁻²
m = 1.01 10² kg
the weight of the tube
W = mg
W = 1.01 10² 9.8
W = 9.93 10² N
Max height occurs when v = 0.
v(t) = ds(t)/dt
v(t) = 80 - 32t
0 = 80 - 32t
t = 5/2
s(5/2) = 80(5/2) - 16(5/2)^2
s(5/2) = 100
Answer: 100 ft
96 = 80t - 16t²
t = 3, 2
(80 ± √256) / 32 using the quadratic equation.
v(2) = 16
v(3) = -16
Answer:
Work= -7.68×10⁻¹⁴J
Explanation:
Given data
q₁=q₂=1.6×10⁻¹⁹C
r₁=2.00×10⁻¹⁰m
r₂=3.00×10⁻¹⁵m
To find
Work
Solution
The work done on the charge is equal to difference in potential energy
W=ΔU
![Work=U_{1}-U_{2}\\ Work=-kq_{1}q_{2}[\frac{1}{r_{2}}-\frac{1}{r_{1}} ]\\Work=(-9*10^{9})*(1.6*10^{-19} )^{2}[\frac{1}{3.0*10^{-15} }-\frac{1}{2*10^{-10} } ]\\ Work=-7.68*10^{-14}J](https://tex.z-dn.net/?f=Work%3DU_%7B1%7D-U_%7B2%7D%5C%5C%20Work%3D-kq_%7B1%7Dq_%7B2%7D%5B%5Cfrac%7B1%7D%7Br_%7B2%7D%7D-%5Cfrac%7B1%7D%7Br_%7B1%7D%7D%20%5D%5C%5CWork%3D%28-9%2A10%5E%7B9%7D%29%2A%281.6%2A10%5E%7B-19%7D%20%29%5E%7B2%7D%5B%5Cfrac%7B1%7D%7B3.0%2A10%5E%7B-15%7D%20%7D-%5Cfrac%7B1%7D%7B2%2A10%5E%7B-10%7D%20%7D%20%5D%5C%5C%20%20Work%3D-7.68%2A10%5E%7B-14%7DJ)
The answer would be 60 cuz a watetfall is a waterfall
30.1 N
Explanation:
Given:


Let's write the components of the net forces at the intersections. Note that the system is equilibrium so all the net forces are zero.
<u>Forces</u><u> </u><u>involving</u><u> </u><u>W1</u><u>:</u>


<u>Forces</u><u> </u><u>involving</u><u> </u><u>W2</u><u>:</u>


Substitute (2) into (3) and we get

Solving for
,
