1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
2 years ago
7

The number of protons equals the atomic number. TRUE OR FALSE?

Physics
1 answer:
Shkiper50 [21]2 years ago
5 0

Answer:

true

Explanation:

The number of protons, neutrons, and electrons in an atom can be determined from a set of simple rules. The number of protons in the nucleus of the atom is equal to the atomic number (Z). The number of electrons in a neutral atom is equal to the number of protons.

You might be interested in
The creation of electricity in a coil of a wire through the movement of a magnet is called what?
emmasim [6.3K]

Answer:

D. Electromagnetic Induction.

Explanation:

6 0
2 years ago
What was significant about the discovery of gallium
Kryger [21]
It confirmed medeleeve's hypothesis (prediction) and showed the use of his table
8 0
3 years ago
Read 2 more answers
What is the number of electrons that move past a point in a wire carrying 500 A of current in 4.0 minutes
mr Goodwill [35]
The current is defined as the amount of charge Q that passes through a given point of a wire in a time \Delta t:
I= \frac{Q}{\Delta t}
Since I=500 A and the time interval is
\Delta t=4.0 min=240 s
the charge is
Q=I \Delta t=(500 A)(240 s)=1.2 \cdot 10^5 C

One electron has a charge of q=1.6 \cdot 10^{-19}C, therefore the number of electrons that pass a point in the wire during 4 minutes is
N= \frac{Q}{q}= \frac{1.2 \cdot 10^5 C}{1.6 \cdot 10^{-19}C}=7.5 \cdot 10^{23} electrons
3 0
3 years ago
I NEED HELP PLEASE, THANKS! :)
mrs_skeptik [129]

Answer:

1. Largest force: C;  smallest force: B; 2. ratio = 9:1

Explanation:

The formula for the force exerted between two charges is

F=K\dfrac{ q_{1}q_{2}}{r^{2}}

where K is the Coulomb constant.

q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.

For simplicity, let's combine Kq₁q₂ into a single constant, k.

Then, we can write  

F=\dfrac{k}{r^{2}}

1. Net force on each particle

Let's

  • Call the distance between adjacent charges d.
  • Remember that like charges repel and unlike charges attract.

Define forces exerted to the right as positive and those to the left as negative.

(a) Force on A

\begin{array}{rcl}F_{A} & = & F_{B} + F_{C} + F_{D}\\& = & -\dfrac{k}{d^{2}}  - \dfrac{k}{(2d)^{2}}  +\dfrac{k}{(3d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(-1 - \dfrac{1}{4} + \dfrac{1}{9} \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-36 - 9 + 4}{36} \right)\\\\& = & \mathbf{-\dfrac{41}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(b) Force on B

\begin{array}{rcl}F_{B} & = & F_{A} + F_{C} + F_{D}\\& = & \dfrac{k}{d^{2}}  - \dfrac{k}{d^{2}}  + \dfrac{k}{(2d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1}{4} \right)\\\\& = &\mathbf{\dfrac{1}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(C) Force on C

\begin{array}{rcl}F_{C} & = & F_{A} + F_{B} + F_{D}\\& = & \dfrac{k}{(2d)^{2}} + \dfrac{k}{d^{2}}  + \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( \dfrac{1}{4} +1 + 1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1 + 4 + 4}{4} \right)\\\\& = & \mathbf{\dfrac{9}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(d) Force on D

\begin{array}{rcl}F_{D} & = & F_{A} + F_{B} + F_{C}\\& = & -\dfrac{k}{(3d)^{2}}  - \dfrac{k}{(2d)^{2}}  - \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( -\dfrac{1}{9} - \dfrac{1}{4} -1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-4 - 9 -36}{36} \right)\\\\& = & \mathbf{-\dfrac{49}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(e) Relative net forces

In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.

F_{A} : F_{B} : F_{C} : F_{D}  =  \dfrac{41}{36} : \dfrac{1}{4} : \dfrac{9}{4} : \dfrac{49}{36}\ = 41 : 9 : 81 : 49\\\\\text{C experiences the largest net force.}\\\text{B experiences the smallest net force.}\\

2. Ratio of largest force to smallest

\dfrac{ F_{C}}{ F_{B}} = \dfrac{81}{9} = \mathbf{9:1}\\\\\text{The ratio of the largest force to the smallest is $\large \boxed{\mathbf{9:1}}$}

7 0
3 years ago
A bowling ball is far from uniform. Lightweight bowling balls are made of a relatively low-density core surrounded by a thin she
tester [92]

Answer:

a)  I = 1,75 10-² kg m²  and b)  I = 1.49 10⁻² kg m²

Explanation:

The expression for the moment of inertia is

    I = ∫ r² dm

The moment of inertia is a scalar by which an additive magnitude, we can add the moments of inertia of each part of the system, taking into account the axis of rotation.

    I = I core + I shell

The moment of inertia of a solid sphere is

    I sphere = 2/5 MR²

The moment of inertia of a thin spherical shell is

    I shell = 2/3 M R²

a) Let's apply to our system, first to the core of weight 1.6 kg and diameter 0.196m, the radius is half the diameter

     R = d / 2

     R= 0.196 m / 2 = 0.098 m

     I core = 2/5 1.6 0.098²

     I core = 6.147 10-3 kg m²

Let's calculate the moment of inertia of the shell of mass 1.6 kg with a diameter of 0.206 m

    R = 0.206 / 2

    R = 0.103 m

    I shell = 2/3 1.6 0.103²

    I shell = 1,132 10-2 kg m²

The moment of inertia of the ball is the sum of these moments of inertia,

    I = I core + I shell

    I = 6,147 10⁻³ + 1,132 10⁻² = 6,147 10⁻³ + 11.32 10⁻³

    I = 17.47 10⁻³ kg m²

    I = 1,747 10-² kg m²

b) Now the ball is report with mass 3.2kg and diameter 0.216 m

    R = 0.216 / 2

    R = 0.108 m

It is a uniform sphere

    I = 2/5 M R²

    I = 2/5 3.2 0.108²

    I = 1.49 10⁻² kg m²

7 0
3 years ago
Other questions:
  • Ina shoots a large marble (Marble A, mass: 0.08 kg) at a smaller marble (Marble B, mass: 0.05 kg) that is sitting still. Marble
    9·1 answer
  • A Texas rancher wants to fence off his four-sided plot of flat land. He measures the first three sides, shown as A, B, and C in
    14·1 answer
  • Calculate the acceleration due to gravity on venus. the radius of venus is about 6.06 x 106 m and its mass is 4.88 x 1024 kg.
    11·1 answer
  • What is Newton's third law?
    7·2 answers
  • How do you open a door if its not locked?
    6·1 answer
  • What is the meaning of physic​
    6·1 answer
  • Ohm's law is not applicable to​
    13·1 answer
  • 3. According to the article, why did Europeans so quickly accept that the sun did move and change?
    5·2 answers
  • A roller coaster is released from the top of a track that is 125 m high. Find the rollar coaster speed when it reaches ground le
    5·1 answer
  • What do ethical guidelines for research with human subjects mean?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!