Here, we are required to determine how fast is you drink, sitting in the cup holder, travelling relative to the car.
- The speed of the drink, sitting in the cup holder, relative to the car is; 0m/s
From the laws of relative motion,
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)</em>
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)when object A and Object B are travelling with speed a and b respectively in opposite directions, the speed of Object A relative to B is; (a+b)</em>
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)when object A and Object B are travelling with speed a and b respectively in opposite directions, the speed of Object A relative to B is; (a+b)when object A and Object B are travelling with speed a and b respectively in the same direction, where speed a = speed b, then the speed of object A relative to object B is; zero(0).</em>
Evidently, the scenario in the question is similar to the third scenario above. The cup, sitting in the cup holder is travelling with the car at the same constant speed 10m/s.
Therefore, the speed of the drink relative to the car is zero(0).
Read more:
brainly.com/question/20549055
Answer:
= 5/9
Explanation:
This is an exercise that we can solve using Archimedes' principle which states that the thrust is equal to the weight of the desalted liquid.
B = ρ_liquid g V_liquid
let's write the translational equilibrium condition
B - W = 0
let's use the definition of density
ρ_body = m / V_body
m = ρ_body V_body
W = ρ_body V_body g
we substitute
ρ_liquid g V_liquid = ρ_body g V_body
In the problem they indicate that the ratio of densities is 5/9, we write the volume of the bar
V = A h_bogy
Thus
we substitute
5/9 =
Molecular formula of water molecule is H₂O.